Chứng tỏ đa thức \(M\left(x\right)=x^2-2x+0,5\)không có nghiệm âm
Chứng tỏ đa thức M(x) = x^2 - 2x + 0,5 không có nghiệm âm
đen ta=4-4*0.5=2>0=> pt luôn có 2 nhiệm
Xét x1+x2=2>0
x1*x2=0.5>0
vậy pt luôn có 2 nghiệm cùng dấu nguyên dương
đây là chương trình lớp 9 cố hiểu
chứng tỏ đa thức m(x)=x^2-2x+0,5 không có nghiệm âm
Cho đa thức \(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
Chứng tỏ đa thức \(Q\left(x\right)\) không có nghiệm.
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
Cho hai đa thức :
\(P\left(x\right)=-2x^2+3x^4+x^3+x^2-\dfrac{1}{4}x\\ Q\left(x\right)=x^4+3x^2-4-4x^3-2x^2\)
Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
thu gọn
\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)
\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)
Lời giải:
Ta thấy:
$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$
$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$
Do đó $x=0$ không phải nghiệm của $Q(x)$
Chứng tỏ đa thức : \(f\left(x\right)=x^2+2x+3\) không có nghiệm
Ta có :
\(f\left(x\right)=x^2+2x+3.\)
\(f\left(x\right)=\left(x^2+2x+1\right)+2\)
\(f\left(x\right)=\left(x+1\right)^2+2\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow f\left(x\right)\ge2\forall x\)
Vậy đa thức trên vô nghiệm
Ta có :
f\left(x\right)=x^2+2x+3.f(x)=x2+2x+3.
f\left(x\right)=\left(x^2+2x+1\right)+2f(x)=(x2+2x+1)+2
f\left(x\right)=\left(x+1\right)^2+2f(x)=(x+1)2+2
Mà \left(x+1\right)^2\ge0\forall x(x+1)2≥0∀x
\Rightarrow f\left(x\right)\ge2\forall x⇒f(x)≥2∀x
Vậy đa thức trên vô nghiệm
chứng tỏ rằng đa thức \(H\left(x\right)=x^4+2x^3+2x^2+1\) không có nghiệm
Ta có:
x^4+2x^3+2x^2+1
=x^2(x^2+2x+2)+1
Ta thấy x^2(x^2+2x+2)> hoặc =0 nên
x^2(x^2+2x+2)+1>0 nên ko có nghiệm
Chúc học tốt
Cho đa thức: \(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\). Chứng tỏ rằng đa thức trên không có nghiệm.
Cho đa thức \(M\left(x\right)=x^2+5x+4\)
a) Tìm nghiệm đa thức M (x)
b) Chứng tỏ \(M\left(x\right)+4\) không có nghiệm
a)M(x)=x2+5x+4=0
x2+x+4x+4=0
(x2+x)+(4x+4)=0
x(x+1)+4(x+1)=0
(x+1)(x+4)=0
=>x+1=0 hoặc x+4=0
x=-1 hoặc x =-4
Vậy nghiệm của đa thức M(x) là x=-1;-4
b)ta có M(x)+4=x2+5x+4+4=x2+5x+8
=x2+\(\frac{5}{2}.x+\frac{5}{2}.x+\frac{25}{4}+\frac{7}{4}\)
=(x2+\(\frac{5}{2}.x\))+(\(\frac{5}{2}.x+\frac{25}{4}\))+\(\frac{7}{4}\)
=x(x+\(\frac{5}{2}\))+\(\frac{5}{2}\)(x+\(\frac{5}{2}\))+\(\frac{7}{4}\)
=(x+\(\frac{5}{2}\))(x+\(\frac{5}{2}\))+\(\frac{7}{4}\)
=(x+\(\frac{5}{2}\))2+\(\frac{7}{4}\)
=>M(x)+4=0 thì (x+\(\frac{5}{2}\))2+\(\frac{7}{4}\)=0
(x+\(\frac{5}{2}\))2=\(\frac{-7}{4}\)(vô lí )
Vậy M(x)+4 không có nghiệm
a) M (x) = 0 <=> x2 + 5x + 4 = 0
<=> (x2 + 4x) + (x + 4) = 0
<=> x.(x + 4) + (x + 4) = 0
<=> (x+ 4).(x + 1) = 0
<=> x + 4 = 0 hoặc x + 1 = 0
<=> x = - 4 hoặc x = -1
Vậy nghiệm của M (x) là -4; -1
b) M(x) + 4 = x2 + 5x + 4 + 4 = x2 + 5x + 8
= x2 + \(\frac{5}{2}\).x + \(\frac{5}{2}\).x + 8= (x2 + \(\frac{5}{2}\).x) +( \(\frac{5}{2}\).x + \(\frac{25}{4}\)) - \(\frac{25}{4}\) + 8
= x.(x + \(\frac{5}{2}\) ) + \(\frac{5}{2}\).(x + \(\frac{5}{2}\)) + \(\frac{7}{4}\) = (x + \(\frac{5}{2}\) ).(x + \(\frac{5}{2}\) ) + \(\frac{7}{4}\) = (x + \(\frac{5}{2}\) )2 + \(\frac{7}{4}\) \(\ge\) 0 + \(\frac{7}{4}\) > 0 với mọi x
Vậy M(x) + 4 không có nghiệm
Chứng tỏ đa thức: \(M\left(x\right)=x^4+\frac{11}{2}.x^2+x+6\) không có nghiệm.
mọi người giúp mình với huhu... lm giúp mình theo cách lớp 7 nhé T.T hoặc nói hướng làm thôi cũng đc =))))