tìm min và max của \(A=\dfrac{4x+3}{x^2+1}\)
Cho các số thực \(x^2+y^2=1\)
Tìm Max, Min của biểu thức \(P=\dfrac{4x^2+2xy-1}{2xy-2y^2+3}\)
\(P=\dfrac{4x^2+2xy-\left(x^2+y^2\right)}{2xy-2y^2+3\left(x^2+y^2\right)}=\dfrac{3x^2+2xy-y^2}{3x^2+2xy+y^2}\)
Biểu thức này không tồn tại max mà chỉ tồn tại min
\(P=\dfrac{-2\left(3x^2+2xy+y^2\right)+9x^2+6xy+y^2}{3x^2+2xy+y^2}=-2+\dfrac{\left(3x+y\right)^2}{2x^2+\left(x+y\right)^2}\ge-2\)
Tìm Max, min của P=6x-8/x^2+1
Tìm min, max của P=4x+3/x^2+1
+) Tìm min
\(E=\dfrac{1+\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{xy+yz+zx}\)
+) Tìm max và min
\(F=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\)
Trong đó a,b,c>0 và \(min\left\{a,b,c\right\}\ge\dfrac{1}{4}max\left\{a,b,c\right\}\)
Tìm Max và Min của A =\(\frac{4x+3}{x^2+1}\).
A = (4x + 3)/(x² + 1)
CM bất đẳng thức phụ : (a² + b²)(c² + d²) ≥ (ac + bd)² (1)
Đây là bất đẳng thức bunhiacopxki , nếu em chưa biết thì anh CM luôn :
(1) <=> a²c² + a²d² + b²c² + b²d² ≥ a²c² + 2abcd + b²d²
<=> a²d² - 2.ad.bc + b²c² ≥ 0
<=> (ad - bc)² ≥ 0 --> luôn đúng --> bđt (1) được CM
- Dấu " = " xảy ra <=> ad = bc <=> a/c = b/d
- Áp dụng bđt (1) ta có : (4.x + 3.1)² ≤ (4² + 3²)(x² + 1²)
<=> (4x + 3)² ≤ 25(x² + 1)
<=> -5.√(x² + 1) ≤ 4x + 3 ≤ 5.√(x² + 1)
<=> -5/√(x² + 1) ≤ A = (4x + 3)/(x² + 1) ≤ 5/√(x² + 1)
mà anh ơi kết quả thầy em cho là -1 <=A<=4
Tìm Max, Min của \(A=\dfrac{x^2+4x+6}{x^2+2x+3}\)
Lời giải:
ĐKXĐ: Với mọi số thực $x$
Ta có: \(A=\frac{x^2+4x+6}{x^2+2x+3}\Rightarrow A(x^2+2x+3)-(x^2+4x+6)=0\)
\(\Leftrightarrow x^2(A-1)+x(2A-4)+(3A-6)=0\)
+) Nếu \(A=1\Rightarrow x=\frac{-3}{2}\) (1)
+) Nếu \(A\neq 1\), pt trên là pt bậc 2
Vì PT luôn có nghiệm nên \(\Delta'=(A-2)^2-(3A-6)(A-1)\geq 0\)
\(\Leftrightarrow -2A^2+5A-2\geq 0\)
\(\Leftrightarrow \frac{1}{2}\leq A\leq 2\) (2)
Từ \((1);(2)\Rightarrow A_{\min}=\frac{1}{2}\Leftrightarrow x=-3; A_{\max}=2\Leftrightarrow x=0\)
1: Tìm max: S= -(3x-2)^2-(3x-1)^2
2: S=-x^2-3y^2-2xy+10x+18y+8
2: tìm min max: P=6x-8/x^2+9
3: tìm max : S=-x^2+4x+1/2x^2+6
4 tìm min A= x^6+512/x^2+8
5 tìm min A= 2x^16x+41/x^2-8x+22
6 tìm min A= x^2-4x+1/x^2
7 tìm max A= x/(x+10)^2
8 cho x+y=1, x,y>0 tìm min A=1/x+1/y
Mọi người ơi giải giuos mình với chiều nay mình hk r mà chưa bt cách giải làm sao mn giúp mình với ai đúng mình sẽ tích cho nhé ngay và luôn luôn. Cảm ơn mn nhiều
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Tìm min, max của D= 4x+3/x^2+1
\(D=\frac{4x+3}{x^2+1}\)
Min D :
\(D=\frac{x^2+4x+4-x^2-1}{x^2+1}\)
\(=\frac{\left(x+2\right)^2-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)
Ta thấy : \(\frac{\left(x+2\right)^2}{x^2+1}\ge0\forall x\)
\(\Rightarrow D\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}-1\ge-1\)
Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)
Max D :
\(D=\frac{4x+3}{x^2+1}=\frac{-4x^2+4x-1+4x^2+4}{x^2+1}\)
\(=\frac{-\left(2x-1\right)^2+4\left(x^2+1\right)}{x^2+1}\)
\(=\frac{-\left(2x-1\right)^2}{x^2+1}+4\)
Ta thấy : \(\frac{-\left(2x-1\right)^2}{x^2+1}\le0\forall x\)
\(\Rightarrow D=\frac{-\left(2x-1\right)^2}{x^2+1}+4\le4\)
Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Cho \(f\left(x\right)=\dfrac{2x^2+ax+b}{x^2+1}\)
Tìm a, b để Max f(x)=3 và Min f(x)=1
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks