Lời giải:
ĐKXĐ: Với mọi số thực $x$
Ta có: \(A=\frac{x^2+4x+6}{x^2+2x+3}\Rightarrow A(x^2+2x+3)-(x^2+4x+6)=0\)
\(\Leftrightarrow x^2(A-1)+x(2A-4)+(3A-6)=0\)
+) Nếu \(A=1\Rightarrow x=\frac{-3}{2}\) (1)
+) Nếu \(A\neq 1\), pt trên là pt bậc 2
Vì PT luôn có nghiệm nên \(\Delta'=(A-2)^2-(3A-6)(A-1)\geq 0\)
\(\Leftrightarrow -2A^2+5A-2\geq 0\)
\(\Leftrightarrow \frac{1}{2}\leq A\leq 2\) (2)
Từ \((1);(2)\Rightarrow A_{\min}=\frac{1}{2}\Leftrightarrow x=-3; A_{\max}=2\Leftrightarrow x=0\)