Giải các ptr sau
a, 10x2 + 17x + 3 = 2(2x - 1) - 15
b, x2 + 7x - 3 = x(x - 1) - 1
c, 2x2 - 5x - 3 = (x + 1)(x - 1) + 3
d, 5x2 - x - 3 = 2x(x - 1) - 1 + x2
e, -6x2 + x - 3 = -3x(x - 1) - 11
f,-4x2 + x(x - 1) - 3 = x(x + 3) + 5
g, x2 - x - 3(2x + 3) = -x(x - 2) - 1
h, -x2 - 4x - 3(2x - 7) = -2x(x + 2) - 7
i, 8x2 - x - 3x(2x - 3) = -x(x - 2)
k, 3(2x + 3) = -x(x - 2) - 1
a: \(\Leftrightarrow10x^2+17x+3-4x+17=0\)
\(\Leftrightarrow10x^2+13x+20=0\)
\(\text{Δ}=13^2-4\cdot10\cdot20=-631< 0\)
Do đó: Phương trình vô nghiệm
b: \(\Leftrightarrow x^2+7x-3=x^2-x-1\)
=>8x=2
hay x=1/4
c: \(\Leftrightarrow2x^2-5x-3=x^2-1+3=x^2+2\)
\(\Leftrightarrow x^2-5x-5=0\)
\(\text{Δ}=\left(-5\right)^2-4\cdot1\cdot\left(-5\right)=25+20=45>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{5-3\sqrt{5}}{2}\\x_2=\dfrac{5+3\sqrt{5}}{2}\end{matrix}\right.\)