Chứng minh rằng \(\dfrac{7n+10}{2n+3}\) là phân số tối giản (n là số tự nhiên)
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
chứng minh phân số \(\dfrac{7n+10}{5n+7}\) là 1 phân số tối giản với mọi số tự nhiên n
Gọi d=ƯCLN(7n+10;5n+7)
=>35n+50-35n-49 chia hếtcho d
=>1 chia hết cho d
=>d=1
=>PSTG
18. Chứng minh rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
a) \(\dfrac{n+1}{2n+3}\)
b) \(\dfrac{2n+3}{4n+8}\)
c) \(\dfrac{3n+2}{5n+3}\)
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
18. Chứng minh rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
\(\dfrac{ n+1}{2n+3 }\) ý a
\(\dfrac{ 2n+3}{4n+8 }\)ý b
\(\dfrac{ 3n+2}{ 5n+3}\) ý c
Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )
n +1 = 2n + 2 (1) ; 2n+3*) (2)
Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1
vậy ta có đpcm
gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )
3n +2 = 15 n + 10 (1) ; 5n + 3 =15n + 9 (2)
lấy (!) - (2) ta được 15n + 10 - 15n - 9 = 1:d => d = 1
Vậy ta có đpcm
Chứng minh rằng các phân số sau tối giản với n tự nhiên:
3n+2/5n+3
Chứng minh rằng các phân số sau có giá trị tự nhiên:
a) 10 mũ 2002 +2 /3
b) 10 mũ 2003 +8 /9
Chứng minh rằng
a) 1717/2929=17171717/29292929
b) 3210-34/4170-41 = 6420-68 / 8340-82
Tìm số tự nhiên n để các phân số sau tối giản
a) 2n+3 / 4n+1
b) 3n+2 /7n+1
Tìm số tự nhiên n để n+3 / 2n-2 ; n+19 / n+6 có giá trị tự nhiên
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
Chứng minh những phân số sau là tối giản
\(G=\dfrac{2n+3}{4n+1}\) \(H=\dfrac{3n+2}{7n+1}\)
\(I=\dfrac{n+7}{n+2}\)
c: nếu n=3 thì đây ko phải phân số tối giản nha bạn
b: Nếu n=3 thì đây cũng ko phải phân số tối giản nha bạn
a: Nếu n=1 thì đây cũng ko phải phân số tối giản nha bạn
Chứng minh rằng : Với mọi n thì phân số \(\dfrac{7n+4}{5n+3}\) là phân số tối giản
\(\text{Để }\) \(\dfrac{7n + 4 }{ 5n + 3 } \) \(\text{ tối giản }\)
\(\Rightarrow ƯC( 7n + 4 ; 5n + 3 ) = 1 \)
\(\text{ Gọi }\) \(ƯC( 7n + 4 ; 5n + 3 ) = d\)
\(\text{ Theo đề bài ta có :}\)
\(\begin{cases} 7n + 4 \vdots d \\5n + 3 \vdots d \end{cases}\)
\(\Rightarrow \begin{cases} 5( 7n + 4 ) \vdots d\\ 7( 5n + 3) \vdots d\end{cases}\)
\(\Rightarrow 7( 5n + 3 ) - 5( 7n + 4 ) \vdots d\)
\(\Rightarrow 35n + 21 - 35n - 20 \vdots d\)
\(\Rightarrow 1 \vdots d\)
\(\Rightarrow d = 1\)
\(\text{ Từ đó suy ra }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)
\(\text{ Vậy }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)
\(#kisibongdem\)
Chứng minh rằng phân số \(\dfrac{21n+4}{14n+3}\) là phân số tối giản với mọi số tự nhiên
Gọi \(\text{ƯCLN(21n+4,14n+3)}\) là \(\text{d}\)
\(\Rightarrow\) \(\text{21n+4 ⋮ d}\)
\(\text{14n+3 ⋮ d}\)
\(\Rightarrow\) \(\text{[3(14n+3)-2(21n+4) ⋮ d}\)
\(\Rightarrow\) \(\text{[42n+9-42n-8] ⋮ d}\)
\(\Rightarrow\) \(\text{1 ⋮ d}\)
\(\Rightarrow\) \(\text{d =1( đpcm )}\)