Cho M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)với a;b;c >0
a)CM: M>1
b)CM: M ko là số nguyên
cho \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\) với a+b+c+d ≠ 0. Tính giá trị biểu thức M = \(\dfrac{2a-b}{c+d}=\dfrac{2b-c}{d+a}=\dfrac{2c-d}{a+b}=\dfrac{2d-a}{b+c}\)
Cho a,b,c > 0. Tìm GTNN:
a, \(A=\dfrac{a^2}{2b+5c}+\dfrac{b^2}{2c+5a}+\dfrac{c^2}{2a+5b}\) với abc = 8
b, \(B=\dfrac{b+c}{a^2}+\dfrac{c+a}{b^2}+\dfrac{a+b}{c^2}\) với abc = 1
c, \(C=\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\) với a + b + c = 1
d, \(D=\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\) với \(a^2+b^2+c^2\ge3\)
cho:\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
tính giá trị biểu thức :
\(M=\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}=\dfrac{c+d}{a+b}=\dfrac{d+a}{b+c}\)
\(TH1:a+b+c+d\ne0\)
\(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\)
\(\Rightarrow\dfrac{2a+b+c+d}{a}-1=\dfrac{a+2b+c+d}{b}-1=\dfrac{a+b+2c+d}{c}-1=\dfrac{a+b+c+2d}{d}-1\)
\(\Rightarrow\dfrac{a+b+c+d}{a}=\dfrac{a+b+c+d}{b}=\dfrac{a+b+c+d}{c}=\dfrac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)
\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)
\(=1+1+1+1\)
\(=4\)
\(TH2:a+b+c+d=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-\left(c+d\right)\\b+c=-\left(d+a\right)\\c+d=-\left(a+b\right)\\d+a=-\left(b+c\right)\end{matrix}\right.\)
\(M=\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{a+d}{b+c}\)
\(=-\dfrac{c+d}{c+d}-\dfrac{d+a}{d+a}-\dfrac{a+b}{a+b}-\dfrac{b+c}{b+c}\)
\(=-1-1-1-1\)
\(=-4\)
Cho dãy tỉ số bằng nhau \(\dfrac{a}{a+b+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\) Tính giá trị của biểu thức M=\(\dfrac{a+b}{c+d}=\dfrac{b+c}{d+a}-\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Cho a, b, c là các số dương. Tìm GTNN của
a) \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
b) \(\dfrac{a}{b+c}+\dfrac{b+c}{a}+\dfrac{b}{a+c}+\dfrac{a+c}{b}+\dfrac{c}{a+b}+\dfrac{a+b}{c}\)
Lời giải:
a, \(A=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+cb}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=1,5\) (AM-GM với a,b,c\(>0\))
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Chú ý: bn cx có thể cm: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(a,b,c>0\right)\)để suy ra
b, \(B=\dfrac{a}{b+c}+\dfrac{b+c}{a}+\dfrac{b}{a+c}+\dfrac{a+c}{b}+\dfrac{c}{a+b}+\dfrac{a+b}{c}\)
\(\ge6\sqrt[6]{\dfrac{a}{b+c}.\dfrac{b+c}{a}.\dfrac{b}{a+c}.\dfrac{a+c}{b}.\dfrac{c}{a+b}.\dfrac{a+b}{c}}=6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Chú ý: bn cx có thể nhóm tổng trên thanh ba nhóm, mỗi nhóm hai hạng tử
a)Đặt \(A=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(A+3=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}\)
\(A+3=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\ge\dfrac{9\left(a+b+c\right)}{2\left(a+b+c\right)}\ge\dfrac{9}{2}\)
\(\Rightarrow A\ge\dfrac{3}{2}\)
\(\Rightarrow MINA=\dfrac{3}{2}\Leftrightarrow a=b=c\)
Cho a,b,c khác 0 và đôi 1 khác nhau t/m a+b+c=0. Tính
A=\(\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)\left(\dfrac{c}{a-b}+\dfrac{a}{b-c}+\dfrac{b}{c-a}\right)\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
Ta có: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}\Rightarrow\dfrac{b+c}{a}=\dfrac{a+c}{b}\left(1\right)\)
\(\dfrac{c}{a+b}=\dfrac{b}{a+c}\Rightarrow\dfrac{a+b}{c}=\dfrac{a+c}{b}\left(2\right)\)
Từ (1), (2) \(\Rightarrow\dfrac{b+c}{a}=\dfrac{a+b}{c}=\dfrac{a+c}{b}\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
a+b−cc=b+c−aa=c+a−bb
⇒a+b−cc+1=b+c−aa+1=c+a−bb+1
⇒a+bc=b+ca=c+ab
+)Nếu a+b+c=0⇒a+b=−c;b+c=−a;c+a=−b
⇒B=a+ba.c+ac.b+cb=−ca.−bc.−ab=−(abc)abc=−1
Nếu a+b+c≠0
Áp dụng tính chất dãy tỉ số bằng nhau ta có
a+bc=b+ca=c+ab=2(a+b+c)a+b+c=2
⇒a+b=2c
b+c=2a
c+a=2b
⇒B=2ca.2bc.2ab=2.2.2=8