Tìm GTNN của :
a) \(A=\dfrac{x^2-4x+1}{x^2}\)
b) \(B=\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Tìm GTNN:
a) \(\dfrac{1}{-x^2+2x-4}\)
b) \(\dfrac{12}{12x-4x^2-13}\)
c) \(\dfrac{x^2-4x-4}{x^2-4x+5}\)
d) \(\dfrac{15}{-6x^2-5y^2+10xy-4x+10y-19}\)
e)\(\dfrac{x^2-2011}{4.\left(x^2+1\right)}\)
a: \(-x^2+2x-4\)
\(=-\left(x^2-2x+4\right)\)
\(=-\left(x^2-2x+1+3\right)\)
\(=-\left\lbrack\left(x-1\right)^2+3\right\rbrack=-\left(x-1\right)^2-3\le-3\forall x\)
=>\(\frac{1}{-x^2+2x-4}\ge-\frac13\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1
b: \(-4x^2+12x-13\)
\(=-\left(4x^2-12x+13\right)\)
\(=-\left(4x^2-12x+9+4\right)\)
\(=-\left\lbrack\left(2x-3\right)^2+4\right\rbrack=-\left(2x-3\right)^2-4\le-4\forall x\)
=>\(\frac{12}{-4x^2+12x-13}\ge\frac{12}{-4}=-3\forall x\)
Dấu '=' xảy ra khi 2x-3=0
=>2x=3
=>\(x=\frac32\)
c: Đặt \(A=\frac{x^2-4x-4}{x^2-4x+5}\)
\(=\frac{x^2-4x+5-9}{x^2-4x+5}\)
\(=1-\frac{9}{x^2-4x+5}\)
Ta có: \(x^2-4x+5\)
\(=x^2-4x+4+1\)
\(=\left(x-2\right)^2+1\ge1\forall x\)
=>\(\frac{9}{\left(x-2\right)^2+1}\le\frac91=9\forall x\)
=>\(-\frac{9}{\left(x-2\right)^2+1}\ge-9\forall x\)
=>\(A=-\frac{9}{\left(x-2\right)^2+1}+1\ge-9+1=-8\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
e: Đặt \(B=\frac{x^2-2011}{4\left(x^2+1\right)}\)
\(=\frac14\cdot\frac{4x^2-8044}{4x^2+4}=\frac14\cdot\frac{x^2-2011}{x^2+1}=\frac14\left(\frac{x^2+1-2012}{x^2+1}\right)=\frac14\left(1-\frac{2012}{x^2+1}\right)\)
Ta có: \(x^2+1\ge1\forall x\)
=>\(\frac{2012}{x^2+1}\le2012\forall x\)
=>\(-\frac{2012}{x^2+1}\ge-2012\forall x\)
=>\(1-\frac{2012}{x^2+1}\ge-2012+1=-2011\forall x\)
=>\(\frac14\left(1-\frac{2012}{x^2+1}\right)\ge-\frac{2011}{4}\forall x\)
Dấu '=' xảy ra khi x=0
Tìm GTNN của:
a) \(A=\dfrac{x^2-4x+1}{x^2}\)
b) B = \(\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
a.
\(A=\dfrac{x^2-4x+1}{x^2}\)
\(\Rightarrow A=\dfrac{x^2-4x+4-3}{x^2}\)
\(\Rightarrow A=\dfrac{\left(x-2\right)^2-3}{x^2}\)
Ta có: \(\left(x-2\right)^2-3\ge-3\)
\(\Rightarrow x=2\)
Khi đó ta được Min A = \(\dfrac{\left(2-2\right)-3}{2^2}\ge\dfrac{-3}{4}\)
Vậy Min A = \(\dfrac{-3}{4}\)
Cho \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
a) Rút gọn.
b) Tìm GTNN của P khi x>1
Em cần câu b ạ. Cảm ơn ạ.
a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{4\left(2-x\right)+x^2\left(2-x\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+4\right)}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\left(\dfrac{\left(x^2-2x\right)\left(x-2\right)}{2\left(x-2\right)\left(x^2+4\right)}+\dfrac{4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\dfrac{x^3-x^2-2x^2+4x+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
\(=\dfrac{x^3+x^2+4x}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)
\(=\dfrac{x\left(x^2+x+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)
\(=\dfrac{\left(x^2+x+4\right)\left(x+1\right)}{2x\left(x^2+4\right)}\)
Tìm GTNN của: \(B=\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Ta có: \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\) B nhỏ nhất khi \(4x^2-6x+1\)có giá trị nhỏ nhất
Mà: \(4x^2-6x+1=4\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)-\dfrac{5}{4}=4\left(x-\dfrac{3}{4}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)
\(\Rightarrow\min\limits_{\left(4x^2-6x+1\right)}=\dfrac{-5}{4}.\) khi \(x=\dfrac{3}{4}\)
\(\Rightarrow\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\Rightarrow\min\limits_B=\dfrac{-5}{4}:\dfrac{1}{4}=\dfrac{-5}{4}.4=-5\) Khi \(x=\dfrac{3}{4}\)
Ta có: (2x−1)2≥0(2x−1)2≥0
⇒⇒ B nhỏ nhất khi 4x2−6x+14x2−6x+1có giá trị nhỏ nhất
Mà: ⇔x=34⇔x=34
x=34x=34
⇒minB=−54:14=−54.4=−5⇒minB=−54:14=−54.4=−5 Khi
Tìm GTNN của: \(B=\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Đề sai, biểu thức này chỉ tồn tại max, ko tồn tại min
Tìm GTLN của: A=x/(x+10)^2 \(B=\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
Tìm GTNN và GTLN nếu có của các biểu thức
\(A=\dfrac{2x^2-2x+5}{\left(x+1\right)^2}\)
\(B=\dfrac{4x^2+x+4}{x^2+x+1}\)
Tìm GTNN:
a) \(\dfrac{x^2+x+1}{x^2+2x+1}\)
b) \(\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\)
c) \(\dfrac{x^2-4x+1}{x^2+9}\)
\(\text{a) }\dfrac{x^2+x+1}{x^2+2x+1}\\ =\dfrac{x^2+2x-x+1+1-1}{x^2+2x+1}\\ =\dfrac{\left(x^2+2x+1\right)-\left(x+1\right)+1}{x^2+2x+1}\\ =\dfrac{x^2+2x+1}{x^2+2x+1}-\dfrac{x+1}{\left(x+1\right)^2}+\dfrac{1}{\left(x+1\right)^2}\\ =1-\dfrac{1}{x+1}+\dfrac{1}{\left(x+1\right)^2}\left(1\right)\\ Đặt\text{ }\dfrac{1}{x+1}=y\\ \Rightarrow\left(1\right)=1-y+y^2\\ =y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(y-\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\\ \left(y-\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y-\dfrac{1}{2}=0\\ \Leftrightarrow y=\dfrac{1}{2}\\ \Leftrightarrow\dfrac{ 1}{x+1}=\dfrac{1}{2}\\ \Leftrightarrow x+1=2\\ \Leftrightarrow x=1\\ Vậy\text{ }GTNN\text{ }của\text{ }phân\text{ }thức\text{ }là\text{ }\dfrac{3}{4}\text{ }khi\text{ }x=1\)
\(\text{b) }\dfrac{4x^2-6x+1}{\left(2x-1\right)^2}\\ =\dfrac{4x^2-4x-2x+1+1-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(4x^2-4x+1\right)-\left(2x-1\right)-1}{\left(2x-1\right)^2}\\ =\dfrac{\left(2x-1\right)^2}{\left(2x-1\right)^2}-\dfrac{2x-1}{\left(2x-1\right)^2}-\dfrac{1}{\left(2x-1\right)^2}\\ =1-\dfrac{1}{2x-1}-\dfrac{1}{\left(2x-1\right)^2}\left(1\right)\\ Đặt\text{ }-\dfrac{1}{2x-1}=y\\ \Rightarrow\left(1\right)=1+y+y^2\\ =y^2+y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\\ Do\text{ }\left(y+\dfrac{1}{2}\right)^2\ge0\forall x\\ \Rightarrow\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\\ Dấu\text{ }"="\text{ }xảy\text{ }ra\text{ }khi:\\ \left(y+\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow y+\dfrac{1}{2}=0\\ \Leftrightarrow y=-\dfrac{1}{2}\\ \Leftrightarrow-\dfrac{1}{2x-1}=-\dfrac{1}{2}\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\\ Vậy\text{ }GTNN\text{ }của\text{ }biểu\text{ }thức\text{ }là\text{ }\dfrac{3}{4}\text{ }khi\text{ }x=\dfrac{3}{2}\)
Bài 2 . Thực hiện phép tính
a)\(6x^3\)\(\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)\)\(-2x^5\)\(-x^3\)
b)\(\left(x-3\right)\left(x^2+3x-2\right)\)
c)\(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
a: =2x^5-15x^3-x^2-2x^5-x^3=-16x^3-x^2
b: =x^3+3x^2-2x-3x^2-9x+6
=x^3-11x+6
c: \(=\dfrac{4x^3+2x^2-6x^2-3x-2x-1+5}{2x+1}\)
\(=2x^2-3x-1+\dfrac{5}{2x+1}\)
a) \(6x^3\left(\dfrac{1}{3}x^2-\dfrac{5}{2}-\dfrac{1}{6}\right)-2x^5-x^3\)
\(=6x^3\left(\dfrac{1}{3}x^2-\dfrac{16}{6}\right)-2x^5-x^3\)
\(=2x^5-16x^3-2x^5-x^3\)
\(=-17x^3\)
b) \(\left(x+3\right)\left(x^2+3x-2\right)\)
\(=x^3+3x^2-2x+3x^2+9x-6\)
\(=x^3+6x^2+7x-6\)
c) \(\left(4x^3-4x^2-5x+4\right):\left(2x+1\right)\)
\(=2x^2+4x^3-2x-4x^2-\dfrac{5}{2}-5x+\dfrac{2}{x}+4\)
\(=4x^3-2x^2-7x+\dfrac{2}{x}+\dfrac{3}{2}\)