GTNN của biểu thức \(A=3x^2+y^2+2xy+4x\)
tìm gtnn của biểu thức
a/ x^2 + 2y^2+2xy +4x + 6y +19
b/2x^2+y^2+2xy-2y-4
c/4x^2 +2xy-4x+4xy-3
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
Tính GTNN, GTLN của các biểu thức sau:
a) A(x)= -3x2+5x+1
b)B(x,y)=4x2+y2+4x-y+1
c)C(x,y)=2x2+y2+2xy-x+5
\(A\left(x\right)=-\left(x^2-\frac{5}{3}x\right)+1=-3\left(x^2-2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2\right)+1+3.\left(\frac{5}{6}\right)^2\)
\(=-3\left(x-\frac{5}{6}\right)^2+\frac{37}{12}\le\frac{37}{12}\)
Dấu "=" xảy ra khi \(x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy GTLN của A là 37/12.
b, c làm tương tự.
Tính GTNN, GTLN của các biểu thức sau:
a) A(x)= -3x2+5x+1
b)B(x,y)=4x2+y2+4x-y+1
c)C(x,y)=2x2+y2+2xy-x+5
Tính GTNN, GTLN của các biểu thức sau:
a) A(x)= -3x2+5x+1
b)B(x,y)=4x2+y2+4x-y+1
c)C(x,y)=2x2+y2+2xy-x+5
tìm gtnn của biểu thức
a/A= x^2 + 2y^2+2xy +4x + 6y +19
b/B=2x^2+y^2+2xy-2y-4
c/C=4x^2 +2xy-4x+4xy-3
\(A=x^2+y^2+2xy+4x+4y+4+y^2+2y+1+14\)
\(A=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
\(\Rightarrow A_{min}=14\) khi \(\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)
\(B=2\left(x^2+xy+\frac{y^2}{4}\right)+\frac{1}{2}\left(y^2-4y+4\right)-6\)
\(B=2\left(x+\frac{y}{2}\right)^2+\frac{1}{2}\left(y-2\right)^2-6\ge-6\)
\(\Rightarrow B_{min}=-6\) khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Câu c đề sai, sao vừa có 2xy lại có cả 4xy
Tìm GTNN của biểu thức:
A= 3x^2 +_ y^2 - 2xy - 10x + 2028
bài 1 tìm gtnn của biểu thức sau
G=(3x^2+y-2xy-7)
bài 2 tìm gtln của các biểu thức sau
A=-x^2-4x-2
B=-2x^2-3x+5
mn ơi giúp mình với ạ mình đang cần gấp ạ
Bài 2:
\(A=-x^2-4x-2=-\left(x^2+4x+4\right)+2=-\left(x+2\right)^2+2\le2\)
Vậy GTLN của A là 2 khi x = -2
\(B=-2x^2-3x+5=-2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+\dfrac{49}{8}=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\)
Vậy GTLN của B là \(\dfrac{49}{8}\) khi x = \(-\dfrac{3}{4}\)
rút gọn biểu thức
a)(x+3)(X^2-3x+9)-(54+x^3)
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
a) (x+3)(x^2-3x+9)-(54+x^3)
= x^3- 3x^2+9x+3x^2-9x+27-54-x63
= -27
b) (2x + y)(4x^2 – 2xy + y^2) – (2x – y)(4x^2+ 2xy + y^2)
= (2x + y)[(2x)^2 – 2x.y + y^2] – (2x – y)[(2x)^2 + 2x.y + y^2]
= [(2x)3^3+ y^3] – [(2x)^3 – y^3]
= (2x)^3 + y^3 – (2x)^3 + y^3
= 2y^3
a)(x+3)(X^2-3x+9)-(54+x^3)
= \(x^3\)+ \(3^3 \) - 54 -\(x^3\)
= 27- 54
= -27
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
= \((2x)^3\) + \(y^3\) - [\((2x)^3\) - \(y^3\) ]
= \(8x^3\) + \(y^3\) - \(8x^3\) + \(y^3\)
= \(2y^3\)
a) Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
=-27
tìm gtnn của a= 3x^2 + y^2 - 2xy -7
b= 4x^2 + 4x
a: \(A=\left(x^2-2xy+y^2\right)+2x^2-7\)
\(=\left(x-y\right)^2+2x^2-7\ge-7\forall x,y\)
Dấu '=' xảy ra khi x=y=0
b: \(B=4x^2+4x+1-1=\left(2x+1\right)^2-1\ge-1\forall x\)
Dấu '=' xảy ra khi x=-1/2