Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Quynh
Xem chi tiết
Ami Mizuno
8 tháng 2 2022 lúc 7:25

a. Xét tứ giác AEHF có: \(\left\{{}\begin{matrix}\widehat{HFA}=90^o\\\widehat{HEA}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{HFA}+\widehat{HEA}=180^o\)\(\Rightarrow\)Tứ giác AEHF nội tiếp đường tròn đường kính HA

Tương tự ta có, xét tứ giác BCEF có: \(\left\{{}\begin{matrix}\widehat{BFC}=90^o\\\widehat{BEC}=90^o\end{matrix}\right.\)\(\Rightarrow\widehat{BFC}+\widehat{BEC}=180^o\)\(\Rightarrow\) Tứ giác BCEF nội tiếp đường tròn đường kính BC

b. Xét đường tròn (O;R) có: \(\widehat{CNM}=\widehat{CBM}\) (cùng nhìn \(\stackrel\frown{CM}\))

Xét tứ giác BCEF nội tiếp đường tròn ta có: \(\widehat{CFE}=\widehat{CBE}\) (cùng nhìn \(\stackrel\frown{CM}\))

\(\Rightarrow\widehat{CNM}=\widehat{CFE}\) (ở vị trí đồng vị)

\(\Rightarrow\)MN//EF (đpcm)

Nguyễn Lê Phước Thịnh
8 tháng 2 2022 lúc 7:14

a: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=180^0\)

Do đó: AEHF là tứ giác nội tiếp

Xét tứ giác BCEF có

\(\widehat{BFC}=\widehat{BEC}=90^0\)

Do đó: BCEF là tứ giác nội tiếp

Đăng
26 tháng 2 2023 lúc 21:23

rei

 

25 Phúc 9/3
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 7 2023 lúc 7:59

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: BFEC nội tiếp

=>góc HFE=góc HBC

=>góc HFE=góc HNM

=>FE//MN

ekhoavvdd
Xem chi tiết
ekhoavvdd
14 tháng 3 2021 lúc 14:46

ai đó làm giúp với

 

Tuấn Hoàng
Xem chi tiết
I
1 tháng 4 2022 lúc 21:46

undefined

a)

xét tứ giác AEHF có :

AEH = 900 (BE là đường cao của B trên AC )

AFH = 900 (CF là dường cao của C trên AB )

ta có ; AEH + AFH = 1800 mà 2 góc này ở vị trí đối nhau 

==> tứ giác AEHF nội tiếp 

xét tứ AEDB có :

AEB = 900 (BE là dường cao của B trên AC )

ADB = 900 (AD là đường cao của A trên BD )

mà 2 góc này cùa nhìn cạnh AB dưới một góc vuông 

==> tứ giác AEDB nội tiếp

câu b vì mình ko hiểu đường cao của đường tròn là gì :/

 

Le anh khoa
Xem chi tiết
Nguyễn Tuấn
12 tháng 3 2016 lúc 10:51

a) sử dụng tính chất tổng 2 góc đối = 180

hoặc 2 góc cùng nhìn 1 cạnh

b) sử dụng góc nội tiếp bằng nhau ở vị trí so le hoặc đồng vị

𝖈𝖍𝖎𝖎❀
Xem chi tiết
Nguyễn Huy Hoàng
10 tháng 5 2021 lúc 13:34

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllloooooooooooooooonnnnnnnnnnnnnnnnnn

Khách vãng lai đã xóa
Trần Khương Duy
11 tháng 5 2021 lúc 16:55

Vì 1 + 1 = 2 nên 2 + 2 = 4 

Đáp số : Không Biết

Khách vãng lai đã xóa
xin vĩnh biệt lớp 9
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2023 lúc 10:45

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC

Nhung Hoàng
Xem chi tiết
IS
21 tháng 4 2020 lúc 9:13

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)

Khách vãng lai đã xóa
nguyen thi hai yen
Xem chi tiết
alabatrap
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2023 lúc 0:04

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b; góc ABD=1/2*180=90 độ

=>BD vuông góc AB

=>BD//CH

góc ACD=1/2*180=90 độ

=>CD vuông góc AC

=>CD//BH

Xét tứ giác BHCD có

BH//CD

BD//CH

=>BHCD là hbh

=>BC cắt HDtại trung điểm của mỗi đường

=>H,M,D thẳng hàng