a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b; góc ABD=1/2*180=90 độ
=>BD vuông góc AB
=>BD//CH
góc ACD=1/2*180=90 độ
=>CD vuông góc AC
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hbh
=>BC cắt HDtại trung điểm của mỗi đường
=>H,M,D thẳng hàng
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b; góc ABD=1/2*180=90 độ
=>BD vuông góc AB
=>BD//CH
góc ACD=1/2*180=90 độ
=>CD vuông góc AC
=>CD//BH
Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hbh
=>BC cắt HDtại trung điểm của mỗi đường
=>H,M,D thẳng hàng
Cho tam giác ABC nhọn nội tiếp đường tròn (O). các đường cao AD, BE và CF của tam giác ABC cắt nhau tại H.
a. Cm: tứ giác BCEF là tứ giác nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác.
b. Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O) tại K và T (K nằm giữa M và T).
Cm: MK.MT=MD.MI
c. Cm: tứ giác IDKT là tứ giác nội tiếp
d. Đường thẳng vuông góc với IH tại I cắt các đường thẳng AB, AC và AD lần lượt tại N, S và G. Cm G là trung điểm của đoạn NS
cho tam giác ABC có 3 góc nhọn (AB<AC) nội tiếp đường tròn tâm O. Vẽ đường cao AD,BE,CF cắt nhau tại H
a) CM AFHE và BFEC là tứ giác nội tiếp
b) dường thẳng EF cắt BC tại I.CM IE.IF=IB.IC
c) AI cắt đường tròn tâm O tại K. M là trung điểm BC.CM 3 điểm K,H,M thẳng hàng
cho tam giác ABC nhọn(AB<AC) nội tiếp đường tròn tâm O. 2 đường cao BE , CF cắt nhau tại H
a) chứng minh tứ giác AEHF và tứ giác BCEF là các tứ giác nội tiếp được
b)đường thẳng EF cắt đường thẳng BC tại M. Chứng minh tam giác MFC đòng dạng tam giác MBE
c) vẽ đường kính AK của dường tròn (O). chứng minhAK vuong góc EF
d) đường thẳng HK cắt đường trò (O) tại I(I khác K). chứng minh 3 điểm: A,I,M thẳng hàng
Em sắp thi cấp 3 rồi mong mọi người giúp em bài này !
Cho tam giác ABC nhọn nội tiếp đường tròn (O). các đường cao AD, BE và CF của tam giác ABC cắt nhau tại H.
a. Cm: tứ giác BCEF là tứ giác nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác.
b. Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O) tại K và T (K nằm giữa M và T).
Cm: MK.MT=ME.MF
c. Cm: tứ giác IDKT là tứ giác nội tiếp
d. Đường thẳng vuông góc với IH tại I cắt các đường thẳng AB, AC và AD lần lượt tại N, S và J. Cm J là trung điểm của đoạn NS
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(O).
Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. CMR:
a/. Các tứ giác AEHF, BCEF nội tiếp
b/ AD.BC = BE AC
c/. CMR BHM cân
Cho tam giác ABC có ba góc nhọn ( AB bé hơn AC ) nội tiếp trong đường tròn tâm O. Hai đường cao BE và CF của tam giác ABC cắt nhau tại H.
a) chứng minh các tứ giác AEHF, BFEC nội tiếp được đường tròn
b) tia AH cắt BC tại D, kẻ đường kính AK của đường tròn tâm O. Chứng ming AB.AC= AD.2R
c) đường thẳng EF cắt đường tròn tâm O tại hai điểm M và N ( M thuộc cung nhỏ AB ). Chứng minh AM = AN
d) vẽ đường tròn tâm i đường kính AH cắt đường tròn tâm O tại S ( S khác A ), đường thẳng SA và BC cắt nhau tại T. Chứng minh ba điểm T, M, N thẳng hàng
cho tam giác ABC nhọn (AB<AC) nội tiếp ường tròn tâm O. Hai đường cao BE và CF cắt nhau tại H
a) chúng minh AEHF và tứ giác BCEF là các tứ giác nội tiếp được
b)đường thẳng EF cắt đường thẳng BC tại M. Chứng minh tam giác MFC đòng dạng tam giác MBE
c) vẽ đường kính AK của đường tròn (O). chúng minh AK vuông goác EF
d)đường thẳng HK cắt đường tròn O tại I(I khác K). chúng minh 3 điểm A,I,M thẳng hàng
cho ∆ABC nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF, cắt nhau tại H
a) CM: tứ giác BCEF nội tiếp đường tròn và xác định tâm I của đường tròn ngoại tiếp tứ giác
b/ Đường thẳng EF cắt đường thẳng BC tại M và cắt đường tròn (O ) tại K và T
( K nằm giữa M và T ) .Chứng minh : MD. MI = MK. MT
Câu 5 (3,0 điểm). Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao
AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh các tứ giác AEHF, BFEC nội tiếp đường tròn.
b) Đường thẳng AO cắt đường tròn tâm O tại điểm K khác điểm A. Gọi I là giao điểm của
hai đường thẳng HK và BC. Chứng minh I là trung điểm của đoạn thẳng BC.
c, tinh AH/AD + BH/BE + CH/CF =2