Giải hệ phương trình
\(3x^2+2y^2-4xy+x+8y-4=0\)
\(x^2-y^2+2x+y-3=0 \)
Giải hệ phương trình: \(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\\x^2-2y^2+2x+y-3=0\end{cases}}\)
Giải hệ: \(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\\x^2-y^2+2x+y-3=0\end{cases}}\)
\(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\left(1\right)\\x^2-y^2+2x+y-3=0\left(2\right)\end{cases}}\)
Nhân 2 vế của (2) với 2, ta được hệ: \(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\left(3\right)\\2x^2-2y^2+4x+2y-6=0\left(4\right)\end{cases}}\)
Lấy (3) - (4) theo vế, ta có: \(\left(x^2-4xy+4y^2\right)-3\left(x-2y\right)+2=0\)
\(\Leftrightarrow\left(x-2y\right)^2-3\left(x-2y\right)+2=0\)
\(\Leftrightarrow\left(x-2y-1\right)\left(x-2y-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-2y=1\\x-2y=2\end{cases}}\)
+) Với x - 2y = 1, thay vào (3) và rút gọn, ta có \(y\left(y+3\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-3\end{cases}}\)
* Với \(y=0\Rightarrow x=1\)
* Với\(y=-3\Rightarrow x=-5\)
+) Với x - 2y = 2, thay vào (3) và rút gọn, ta có \(3y^2+13y+5=0\)(**)
Giải phương trình (**) thu được hai nghiệm \(\frac{-13+\sqrt{109}}{6}\)và \(\frac{-13-\sqrt{109}}{6}\)
* Với \(y=\frac{-13+\sqrt{109}}{6}\Rightarrow x=\frac{-7+\sqrt{109}}{3}\)
* Với \(y=\frac{-13-\sqrt{109}}{6}\Rightarrow x=\frac{-7-\sqrt{109}}{3}\)
Vậy hệ có 4 nghiệm (x;y) tương ứng là \(\left(1;0\right);\left(-5;-3\right);\)\(\left(\frac{-7+\sqrt{109}}{3};\frac{-13+\sqrt{109}}{6}\right);\)\(\left(\frac{-7-\sqrt{109}}{3};\frac{-13-\sqrt{109}}{6}\right)\)
/uc8tfghnm?u..........................hyuuttfd ggrs tdjtrthu a678t=45678/?
Giải hệ phương trình \(\hept{\begin{cases}x^3+8y^3-4xy^2\\2x^4+8y^4-2x=y\end{cases}=0}\)
1, giải hệ phương trình:\(\left\{{}\begin{matrix}y^3-2x^3+3x^2y-3xy^2=0\\x^2y^2-4x^2y-y^2-8x+8y+4=0\end{matrix}\right.\)
\(y^3+3x^2y-3xy^2-2x^3=0\)
\(\Leftrightarrow\left(y^3-xy^2+x^2y\right)-2\left(x^3-x^2y+xy^2\right)=0\)
\(\Leftrightarrow y\left(x^2-xy+y^2\right)-2x\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\left(y-2x\right)\left(x^2-xy+y^2\right)=0\)
\(\Rightarrow y=2x\)
Thế xuống dưới:
\(x^4-2x^3-x^2+2x+1=0\)
Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}-2\left(x-\frac{1}{x}\right)-1=0\)
Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\) pt trở thành:
\(t^2-2t+1=0\Leftrightarrow t=1\)
\(\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)
Giải hệ phương trình
\(\hept{\begin{cases}2\left(x+y\right)^3+4xy-3=0\\\left(x+y\right)^4+2y^2+x+1=2x^2+4xy+3y\end{cases}}\)
\(\left\{{}\begin{matrix}3x^2+2y^2-4xy+x+8y-4=0\\x^2-y^2+2x+y-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+2y^2-4xy+x+8y-4=0\\2x^2-2y^2+4x+2y-6=0\end{matrix}\right.\)
\(\Rightarrow x^2+4y^2-4xy-3x+6y+2=0\)
\(\Leftrightarrow\left(x-2y\right)^2-3\left(x-2y\right)+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=2\end{matrix}\right.\)
a) Giải bất phương trình:
\(\sqrt{x^2+2x}+\sqrt{x^2+3x}\) ≥ \(2x\)
b) Giải hệ phương trình
\(\left\{{}\begin{matrix}x^3+6x^2y+9xy^2+y^3=0\\\sqrt{x-y}+\sqrt{x+y}=2\end{matrix}\right.\)
a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)
TH1 : \(x\le-3\) ( LĐ )
TH2 : \(x\ge0\)
BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)
\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge0\)
Vậy \(S=R/\left(-3;0\right)\)
Giải phương trình và hệ phương trình:
1) \(-2x^2+x+1-2\sqrt{x^2+x+1}=0\)
2) \(\left\{{}\begin{matrix}x^4+y^3x+x^2y^2=3y^4\\2x^2+y^4+1=2x\left(y^2+1\right)\end{matrix}\right.\)
1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)
\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)
Ta có :
\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)
Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)
\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)
\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)
\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)
Vậy phương trình cho vô nghiệm
Giải phương trình:
a) x2 +3y2 +4xy+2x+4y=0
b) x2 -2(3y+1)x+8y2 +6y +6 =0
c) x2 -(y+4)x+4y-25=0
d) x3 +2x2y +xy+2y2 -15 =0