Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phúc Lộc
Xem chi tiết
Pham Van Hung
Xem chi tiết
Kiệt Nguyễn
7 tháng 5 2020 lúc 10:41

\(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\left(1\right)\\x^2-y^2+2x+y-3=0\left(2\right)\end{cases}}\)

Nhân 2 vế của (2) với 2, ta được hệ: \(\hept{\begin{cases}3x^2+2y^2-4xy+x+8y-4=0\left(3\right)\\2x^2-2y^2+4x+2y-6=0\left(4\right)\end{cases}}\)

Lấy (3) - (4) theo vế, ta có: \(\left(x^2-4xy+4y^2\right)-3\left(x-2y\right)+2=0\)

\(\Leftrightarrow\left(x-2y\right)^2-3\left(x-2y\right)+2=0\)

\(\Leftrightarrow\left(x-2y-1\right)\left(x-2y-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-2y=1\\x-2y=2\end{cases}}\)

+) Với x - 2y = 1, thay vào (3) và rút gọn, ta có \(y\left(y+3\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-3\end{cases}}\)

* Với \(y=0\Rightarrow x=1\)

* Với\(y=-3\Rightarrow x=-5\)

+) Với x - 2y = 2, thay vào (3) và rút gọn, ta có \(3y^2+13y+5=0\)(**)

Giải phương trình (**) thu được hai nghiệm \(\frac{-13+\sqrt{109}}{6}\)và \(\frac{-13-\sqrt{109}}{6}\)

* Với \(y=\frac{-13+\sqrt{109}}{6}\Rightarrow x=\frac{-7+\sqrt{109}}{3}\)

* Với \(y=\frac{-13-\sqrt{109}}{6}\Rightarrow x=\frac{-7-\sqrt{109}}{3}\)

Vậy hệ có 4 nghiệm (x;y) tương ứng là \(\left(1;0\right);\left(-5;-3\right);\)\(\left(\frac{-7+\sqrt{109}}{3};\frac{-13+\sqrt{109}}{6}\right);\)\(\left(\frac{-7-\sqrt{109}}{3};\frac{-13-\sqrt{109}}{6}\right)\)

Khách vãng lai đã xóa
Đỗ  Ngọc Thiên Ân
7 tháng 6 2020 lúc 20:34

/uc8tfghnm?u..........................hyuuttfd ggrs tdjtrthu a678t=45678/?

Khách vãng lai đã xóa
Dương Thiên Tuệ
Xem chi tiết
mr. killer
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 8 2020 lúc 15:44

\(y^3+3x^2y-3xy^2-2x^3=0\)

\(\Leftrightarrow\left(y^3-xy^2+x^2y\right)-2\left(x^3-x^2y+xy^2\right)=0\)

\(\Leftrightarrow y\left(x^2-xy+y^2\right)-2x\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(y-2x\right)\left(x^2-xy+y^2\right)=0\)

\(\Rightarrow y=2x\)

Thế xuống dưới:

\(x^4-2x^3-x^2+2x+1=0\)

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2+\frac{1}{x^2}-2\left(x-\frac{1}{x}\right)-1=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\) pt trở thành:

\(t^2-2t+1=0\Leftrightarrow t=1\)

\(\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)

Hắc Thiên
Xem chi tiết
Clgt
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 2 2020 lúc 23:32

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+2y^2-4xy+x+8y-4=0\\2x^2-2y^2+4x+2y-6=0\end{matrix}\right.\)

\(\Rightarrow x^2+4y^2-4xy-3x+6y+2=0\)

\(\Leftrightarrow\left(x-2y\right)^2-3\left(x-2y\right)+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=2\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Vũ Đăng Trọng
Xem chi tiết
Nguyễn Ngọc Lộc
8 tháng 5 2021 lúc 14:18

a, ĐKXĐ : \(\left[{}\begin{matrix}x\le-3\\x\ge0\end{matrix}\right.\)

TH1 : \(x\le-3\) ( LĐ )

TH2 : \(x\ge0\)

BPT \(\Leftrightarrow x^2+2x+x^2+3x+2\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge4x^2\)

\(\Leftrightarrow\sqrt{\left(x^2+2x\right)\left(x^2+3x\right)}\ge x^2-\dfrac{5}{2}x\)

\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x+3\right)}\ge2x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< \dfrac{5}{2}\\x\ge-2\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x^2+20x+24\ge4x^2-20x+25\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0\le x< \dfrac{5}{2}\\x\ge\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow x\ge0\)

Vậy \(S=R/\left(-3;0\right)\)

 

 

HT.Phong (9A5)
Xem chi tiết
Nguyễn Đức Trí
15 tháng 9 2023 lúc 11:52

1) \(-2x^2+x+1-2\sqrt[]{x^2+x+1}=0\)

\(\Leftrightarrow2\sqrt[]{x^2+x+1}=-2x^2+x+1\left(1\right)\)

Ta có :

\(2\sqrt[]{x^2+x+1}=2\sqrt[]{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\sqrt[]{3}\)

Dấu "=" xảy ra khi và chỉ khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow-2x^2+x+1=\sqrt[]{3}\)

\(\Leftrightarrow2x^2-x+\sqrt[]{3}-1=0\)

\(\Delta=1-8\left(\sqrt[]{3}-1\right)=9-8\sqrt[]{3}\)

\(pt\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\\x=\dfrac{1-\sqrt[]{9-8\sqrt[]{3}}}{4}\left(loại\right)\end{matrix}\right.\) \(\left(vì.x=-\dfrac{1}{2}\right)\)

Vậy phương trình cho vô nghiệm

Ha Viet Dung
Xem chi tiết
Nguyễn Ngọc Bảo
23 tháng 8 2020 lúc 21:31

?????

Khách vãng lai đã xóa