Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
mr. killer

1, giải hệ phương trình:\(\left\{{}\begin{matrix}y^3-2x^3+3x^2y-3xy^2=0\\x^2y^2-4x^2y-y^2-8x+8y+4=0\end{matrix}\right.\)

Nguyễn Việt Lâm
26 tháng 8 2020 lúc 15:44

\(y^3+3x^2y-3xy^2-2x^3=0\)

\(\Leftrightarrow\left(y^3-xy^2+x^2y\right)-2\left(x^3-x^2y+xy^2\right)=0\)

\(\Leftrightarrow y\left(x^2-xy+y^2\right)-2x\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(y-2x\right)\left(x^2-xy+y^2\right)=0\)

\(\Rightarrow y=2x\)

Thế xuống dưới:

\(x^4-2x^3-x^2+2x+1=0\)

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(x^2+\frac{1}{x^2}-2\left(x-\frac{1}{x}\right)-1=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2+2\) pt trở thành:

\(t^2-2t+1=0\Leftrightarrow t=1\)

\(\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x^2-x-1=0\Leftrightarrow...\)


Các câu hỏi tương tự
Luyri Vũ
Xem chi tiết
google help
Xem chi tiết
Trần Thu Trang
Xem chi tiết
bach nhac lam
Xem chi tiết
Kun ZERO
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
Kun ZERO
Xem chi tiết
Lâm Ánh Yên
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết