Giải phương Trình x4+2x3+8x2+10x+15=0
Phương trình x 4 − 5 x 3 + 8 x 2 − 10 x + 4 = 0 có bao nhiêu nghiệm nguyên?
A. 4
B. 1
C. 2
D. 0
x 4 − 5 x 3 + 8 x 2 − 10 x + 4 = 0 ⇔ ( x 4 + 4 x 2 + 4 ) − 5 x 3 + 4 x 2 − 10 x = 0
⇔ x 2 + 2 2 − 5 x 3 + 10 x + 4 x 2 = 0 ⇔ x 2 + 2 2 − 5 x x 2 + 2 + 4 x 2 = 0
Đặt t = x 2 + 2 ta được t 2 − 5 t x + 4 x 2 = 0 ⇔ t − x t − 4 x = 0
Hay phương trình đã cho ⇔ x 2 − x + 2 x 2 − 4 x + 2 = 0
⇔ x 2 − x + 2 = 0 ( V N ) x 2 − 4 x + 2 = 0 ⇔ x = 2 ± 2
Vậy phương trình không có nghiệm nguyên
Đáp án cần chọn là: D
chứng minh phương trình sau vô nghiệm:
x4-2x3+10x+30=0
Giải:
Tập xác định của phương trình
x\(\varepsilon\) (\(\infty\);\(\infty\)
Giải phương trình sau:x4-8x2-9=0
ta có:
x4-8x2-9=0
x4+9x2-x2-9=0
x4-x2+9x2-9=0
x2(x2-1)+9(x2-10=0
(x2-1)(x2+9)=0
=>x2-1=0=>x=1
=>x2+9=0=>x=-3
\(X^4-8x^2-9=0\left(1\right)\)
Đặt:\(t=x^2\left(t\ge0\right)\)
\(Pt\left(1\right)\Leftrightarrow t^2-8t-9=0\)
Tự giải pt bậc 2 ta đc \(\orbr{\begin{cases}t_1=9\left(n\right)\\t_2=-1\left(l\right)\end{cases}}\)
Với:\(t_{1=9\Rightarrow x^2=9\Rightarrow x=\orbr{\begin{cases}3\\-3\end{cases}}}\)
Phân tích
a,(x2 + x + 2)3 - (x+1)3 = x6 +1 b,(x2 + 10x + 8)2 - (8x + 4)(x2 + 8x+7)
c, A= x4 + 2x3 + 3x2 + 2x+4 d,B= x4 + 4x3 + +8x2 + 8x + 4
e, C= x4 - 2x3 + 5x2 - 4x + 4
Giải phương trình:
6x4 + 8x2 + 6 = (x4 + 2x2 + 1) (1 + 4y - y2)
Gỉai các phương trình sau;
a, 3x2 - 8x2 - 2x + 3 = 0
b, x3 - 4x2 + 7x - 6 = 0
c, 2x3 + 7x2 + 7x + 2 = 0
d, 2x3 - 9x + 2 = 0
e, 8x3 - 4x2 + 10x - 5 = 0
a, 3x2 - 8x2 - 2x+3=0
2x(3-8) - 2x+3=0
2x5 - 2x+3=0
2x5 - 2x=0-3=
2x5 - 2x=-3
2x(5-x)=-3
5-x=-3/2
5-x=1,5
x=5-1,5
x=3,5
3,5 nha bn
chúc bn học tốt
happy new year
Giải phương trình
e) x4 -4x3-8x2+8x=0
f) 2x2+3xy+y2=0
g) 2x4-x3-9x2+13x-5=0
h) (x+1)(x+3)(x+5)(x+7)+15=0
e: =>x(x^3-4x^2-8x+8)=0
=>x[(x^3+8)-4x(x+2)]=0
=>x(x+2)(x^2-2x+4-4x)=0
=>x(x+2)(x^2-6x+4)=0
=>\(x\in\left\{0;-2;3+\sqrt{5};3-\sqrt{5}\right\}\)
g: =>2x^4+5x^3-6x^3-15x^2+6x^2+15x-2x-5=0
=>(2x+5)(x^3-3x^2+3x-1)=0
=>(2x+5)(x-1)^3=0
=>x=1 hoặc x=-5/2
h: =>(x^2+8x+7)(x^2+8x+15)+15=0
=>(x^2+8x)^2+22(x^2+8x)+120=0
=>(x^2+8x+10)(x^2+8x+12)=0
=>(x^2+8x+10)(x+2)(x+6)=0
=>\(x\in\left\{-2;-6;-4+\sqrt{6};-4-\sqrt{6}\right\}\)
F(x)=x4+5x2-4x+x5-x4-8x2+3+2x3+2
Thu gọn và sắp xếp phải k ạ?
`F(x)= (x^4-x^4)+(5x^2-8x^2)-4x+x^5+3+2x^3+2`
`F(x) = -3x^2-4x+x^5+3+2x^3+2`
`F(x)= x^5+2x^3-3x^2-4x+3+2`
\(F\left(x\right)=x^4+5x^2-4x+x^5-x^4-8x^2+3+2x^3+2\)
\(F\left(x\right)=x^5+\left(x^4-x^4\right)+2x^3+\left(5x^2-8x^2\right)-4x+\left(3+2\right)\)
\(F\left(x\right)=x^5+2x^3-3x^2-4x+5\)
1.Giải các phương trình sau:
a) 2x2 +16 -6 = 4\(\sqrt{x\left(x+8\right)}\)
b) x4 -8x2 + x-2\(\sqrt{x-1}\) + 16=0
2. Gọi x1;x2 là nghiệm phương trình x2 -3x -7 =0. Không giải phương trình tính các giá trị của biểu thức sau:
A = \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}\)
B= \(x^2_1+x_2^2\)
C= |x1 - x2|
D= \(x_1^4+x_2^4\)
E= (3x1 + x2) (3x2 + x1)
2:
\(A=\dfrac{x_2-1+x_1-1}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{3-2}{-7-3+1}=\dfrac{1}{-9}=\dfrac{-1}{9}\)
B=(x1+x2)^2-2x1x2
=3^2-2*(-7)
=9+14=23
C=căn (x1+x2)^2-4x1x2
=căn 3^2-4*(-7)=căn 9+28=căn 27
D=(x1^2+x2^2)^2-2(x1x2)^2
=23^2-2*(-7)^2
=23^2-2*49=431
D=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=69+10*(-7)=-1
giải các phương trình sau:
a) x4−2x3−6x+16x−8=0