\(x^4+2x^3+8x^2+10x+15=0\)
\(\Leftrightarrow\left(x^4+5x^2\right)+\left(2x^3+10x\right)+\left(3x^2+15\right)=0\)
\(\Leftrightarrow x^2\left(x^2+5\right)+2x\left(x^2+5\right)+3\left(x^2+5\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x^2+2x+3\right)=0\)
mà ta có: \(x^2+5\ge5>0;x^2+2x+3=\left(x+1\right)^2+1\ge1>0\)
nên suy ra phương trình vô nghiệm.