Tính giá trị của biểu thức:
16x2y5-2x3y2 với x=0,5 và y=-1
Tính giá trị của biểu thức 16x2y5 – 2x3y2 tại x = 0,5 và y = -1.
\(16x^2y^5-2x^3y^2\\ =2x^2y^2\left(8y^3-x\right)\\ =2.0,5^2.\left(-1\right)^2\left[8.\left(-1\right)^3-0,5\right]\\ =2.0,25.1\left(-8-0,5\right)\)
\(=\dfrac{1}{2}.-\dfrac{17}{2}=-\dfrac{17}{4}\)
Thay \(x=\dfrac{1}{5}\) và y=-1 vào biểu thức \(16x^2y^5-2x^3y^2\), ta được:
\(16\cdot\dfrac{1}{25}\cdot\left(-1\right)-2\cdot\dfrac{1}{125}\cdot1\)
\(=-\dfrac{16}{25}-\dfrac{2}{125}\)
\(=-\dfrac{82}{125}\)
Tính giá trị của biểu thức 16x2y5 – 2x3y2 tại x = 0,5 và y = -1.
Vậy giá trị của biểu thức 16x2y5 – 2x3y2 tại x = 0,5 và y = –1 là -17/4.
Cho đa thức :A=1/2x^3y=x(xy^2)-1/2x. xy+x^2 2y^3+2x3y2
1) thu gọn A
2)tính giá trị của đa thức A biết x+y=5 và 1/x+1/y=-1
Điền kết quả tính được vào bảng:
Giá trị của x và y | Giá trị biểu thức (x – y)(x2 + xy + y2) |
x = -10 ; y = 2 | |
x = -1 ; y = 0 | |
x = 2 ; y = -1 | |
x = -0,5 ; y = 1,25 |
Ta có:
A = (x – y).(x2 + xy + y2)
= x.(x2 + xy + y2) + (–y).(x2 + xy + y2)
= x.x2 + x.xy + x.y2 + (–y).x2 + (–y).xy + (–y).y2
= x3 + x2y + xy2 – x2y – xy2 – y3
= x3 – y3 + (x2y – x2y) + (xy2 – xy2)
= x3 – y3.
Tại x = –10, y = 2 thì A = (–10)3 – 23 = –1000 – 8 = –1008
Tại x = –1 ; y = 0 thì A = (–1)3 – 03 = –1 – 0 = –1
Tại x = 2 ; y = –1 thì A = 23 – (–1)3 = 8 – (–1) = 9
Tại x = –0,5 ; y = 1,25 thì A = (–0,5)3 – 1,253 = –0,125 – 1,953125 = –2,078125
Vậy ta có bảng sau :
Giá trị của x và y | Giá trị biểu thức (x – y)(x2 + xy + y2) |
x = -10 ; y = 2 | -1008 |
x = -1 ; y = 0 | -1 |
x = 2 ; y = -1 | 9 |
x = -0,5 ; y = 1,25 | -2,078125 |
a). Khi nào số a được gọi là nghiệm của đa thức P(x).
b). Cho P(x) = x4 + 2x2 + 1, chứng tỏ rằng P(x) không có nghiệm.
c). Tính giá trị của biểu thức 16x2y5 – 2x3y2 tại x = ½ và y= -1
mọi người giúp mình với!!!!!!!!!!!!!!!!!!
cảm ơn mọi người
b) \(x^4+2x^2+1=0\)
\(\Rightarrow\left(x^2+1\right)^2=0\)
Mà: \(\left(x^2+1\right)^2>0\)
=> P(x) ko có nghiệm
c) \(16x^2y^5-2x^3y^2=\dfrac{15}{4}\)
a)
Số a được gọi là nghiệm của đa thức P(x) khi có P(a) = 0
b)$x^4 + 2x^2 + 1 = 0$$⇔ (x^2 + 1)^2 = 0$$⇔ x^2 = -1$(vô nghiệm do $x^2 ≥ 0$ với mọi x)Vậy P(x) không có nghiệmc)\(S = x^2y^2.(16y^3 - 2x) = (-1.\dfrac{1}{2})^2.(16.(-1)^3-2.\dfrac{1}{2})=\dfrac{-17}{4}\)`Answer:`
`16x^2y^5-2x^2y^5`
`=(16-2)x^2y^5`
`=14x^2y^5`
Thay `x=0,5` và `y=-1` vào biểu thức ta được:
`14.0,5^2.(-1)^5`
`=3,5.(-1)`
`=-3,5`
Thay x = 1/2 và y = -1 ta được
\(14x^2y^5=\dfrac{14.1}{4}.\left(-1\right)=-\dfrac{14}{4}=-\dfrac{7}{2}\)
Tính giá trị của biểu thức 16x2y5 - 2x3 y2 tại x = 0,5 và y = -1
Ta thay giá trị biểu thức 16x^2y^5-2x^3y^2 tại x=0,5 và y=-1
16.0,5^2.(-1)^5-2.0,5^3.(-1)^2
=16.0,25.(-1)-2.1/8.1
=-4.1/4
=-17/4 hoặc -4,25
Cho x+y=4 và x2+y2=10. Tính giá trị của biểu thức M=x6+y6
Cho 8x3-32y-32x2y+8x=0 và y khác 0. Tính giá trị của biểu thức M=3x+2y/3x-2y
Cho x2-5x+1=0 . Tính giá trị của biểu thức M=x4+x21/2x2
Giải giúp mình với!!!
Bài 1:
$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$
$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$
$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$
Bài 2:
$8x^3-32y-32x^2y+8x=0$
$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$
$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$
$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)
$\Leftrightarrow x=4y$
Khi đó:
$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$
Bài cuối $x^21$ không rõ. Bạn xem lại.
Bài 1: Cho xyz=2 và x+y+z=0. Tính giá trị của biểu thức: N=(x+y)(y+z)(x+z)
Bài 2: Tính giá trị biểu thức: 3a-2b / a-3b với a/b= 10/3
Bài 5: Tính giá trị của biểu thức: a-8 / b-5 - 4a-b / 3a+3 với a-b=3
Bài 1 :
\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)
hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)
mà \(xyz=2\Rightarrow-xyz=-2\)
hay N nhận giá trị -2
Bài 2 :
\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)
hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
hay biểu thức trên nhận giá trị là 24
c, Ta có : \(a-b=3\Rightarrow a=3+b\)
hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)
\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi
1.Ta có:\(x+y+z=0\)
\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)
\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)
2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)
Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)
Vậy....