Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tokisaki Kurumi
Xem chi tiết
Phạm Nguyễn Minh Vương
25 tháng 6 2017 lúc 21:30

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)

Tokisaki Kurumi
25 tháng 6 2017 lúc 21:35

hey you, còn câu b,c?

le thai ha
25 tháng 6 2017 lúc 21:36

ở đây có ai thích sơn tùng không ?

Jimin
Xem chi tiết
Phạm Minh Quang
22 tháng 8 2018 lúc 11:00

c, Ta có : a+b+c=0 ⇒ c=-(a+b)

⇒ a3+b3+c3= a3+b3-(a+b)3= x3+y3-(x3+3x2y+3xy2+y3)= x3+y3-x3-3x2y-3xy2-y3= -3x2y-3xy2= -3xy(x+y)= 3xyz(đpcm)

DƯƠNG PHAN KHÁNH DƯƠNG
22 tháng 8 2018 lúc 12:22

Câu a : Ta có :

\(x^3+x^2z+y^2z-xyz+y^3=0\)

\(\Leftrightarrow\left(x^3+y^3\right)+\left(x^2z-xyz+y^2z\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(x^2-xy+y^2\right)\left(x+y+z\right)=0\)

\(\Leftrightarrow x+y+z=0\)

Câu b : Khai triển VT ta có :

\(VT=\left(a+b+c\right)^3-a^3-b^3-c^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

Câu c : Ta có :

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Luôn đúng vì \(a+b+c=0\)

Nguyễn Thị Phương Uyên
Xem chi tiết
Nguyễn Thị Phương Uyên
17 tháng 9 2017 lúc 10:31

CÁC CẬU ƠI GIÚP MIK VS!!!!!!

Hockaido
Xem chi tiết
Ngọc Minh
Xem chi tiết
Toru
20 tháng 8 2023 lúc 17:08

Đặt \(a+b-c=x;b+c-a=y;c+a-b=z\)

\(\Rightarrow x+y+z=a+b-c+b+c-a+c+a-b\)

\(=a+b+c\)

Thay \(x;y;z;x+y+z\) vào M, ta được:

\(M=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3\left(x+y\right)^2z+3\left(x+y\right)z^2-x^3-y^3-z^3\)

\(=x^3+y^3+z^3-x^3-y^3-z^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)\)\(=3\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=3\left(x+y\right)\left(xy+xz+zy+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(=3\left(a+b-c+b+c-a\right)\left(b+c-a+c+a-b\right)\left(a+b-c+c+a-b\right)\)

\(=3.2b.2c.2a=24abc\)

Vì \(24abc⋮24\forall a,b,c\) nên \(M⋮24\)

Vậy...

Phạm Tố Uyên
Xem chi tiết
haiz aneu
Xem chi tiết
Lê Minh Tuấn
Xem chi tiết
Phan Nghĩa
21 tháng 9 2017 lúc 22:26

Lê Minh Tuấn bn tham khảo nha:

 a+b+c+d=0 
=>a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d)) 
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)

Lê Minh Tuấn
21 tháng 9 2017 lúc 22:37

cảm ơn OoO Ledegill2 OoO

Pham To Uyen
Xem chi tiết
Nguyễn Việt Hùng
26 tháng 7 2018 lúc 17:14

ta có : a=b+c =>a^3+b^3/a^3+c^3=(b+c)^3+b^3/(b+c)^3+c^3

=(b+c+b)*((b+c)^2-b*(b+c)+b^2)/(b+c+c)*((b+c)^2-c*(b+c)+c^2)

=(2b+c)*(b^2+2bc+c^2-b^2-bc+b^2)/(2c+b)*(b^2+2bc+c^2-cb-b^2+c^2)

=(2b+c)*(b^2+bc+b^2)/(2c+b)*(b^2+bc+c^2)

=2b+c/2c+b

lại có : a+b/a+c= b+c+b/b+c+c=2b+c/2c+b

=>a^3+b^3/a^3+c^3= a+b/a+c