1,\(\sqrt{2+\sqrt{\text{x}-5}}=\sqrt{13-x}\)
giải phương trình:
\(\sqrt{3\text{x}^{2^{ }}-5\text{x}+1}-\sqrt{\text{x}^2-2}=\sqrt{3\left(\text{x}^2-\text{x}-1\right)}-\sqrt{\text{x}^{2^{ }}-3\text{x}+4}\)
ĐKXĐ \(3x^2-5x+1\ge0;x^2-2\ge0;x^2-x-1\ge0\)
Ta có : \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3.\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
\(\Leftrightarrow\sqrt{3x^2-5x+1}-\sqrt{3\left(x^2-x-1\right)}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}\)
\(\Leftrightarrow\dfrac{3x^2-5x+1-3.\left(x^2-x-1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)
\(\Leftrightarrow\dfrac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=\dfrac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}+\dfrac{2}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=0\left(∗\right)\end{matrix}\right.\)
Xét phương trình (*) ta có VT > 0 \(\forall x\) mà VP = 0
nên (*) vô nghiệm
Vậy x = 2 là nghiệm phương trình
Giải hệ phương trình:
\(\hept{\begin{cases}\text{}\text{}\text{}\text{}\text{}\sqrt{x}+2\sqrt{x+3}=7-\sqrt{x^2+3}\\\sqrt{x+y}+\sqrt{7-y}=y^2-6y+13\end{cases}}\)
Rút gọn: \(\frac{\sqrt{1+2\sqrt{5\sqrt{\text{7}}-13}}-\sqrt{\sqrt{\text{7}}-2}}{\sqrt{3}-\sqrt{\text{7}}}-\sqrt{\frac{2}{3-\sqrt{5}}}\)
Giải phương trình sau:
\(1,\sqrt{x-2}-\sqrt{x+1}=\sqrt{2\text{x}-1}-\sqrt{x+3}\)
\(2,x^2-6\text{x}+26=6\sqrt{2\text{x}+1}\)
\(3,\left(\sqrt{x+5}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+7\text{x}+10}\right)=3\)
4,\(\sqrt[3]{x-4}-\sqrt{9-x}=-1\)
5,\(\left(x+1\right)\sqrt{16\text{x}+17}=8\text{x}^2-15\text{x}-23\)
Giúp mình với ạ mình đang cần gấp <3
Câu 3: đề là \(\sqrt{x+5}-\sqrt{x-2}\) hay \(\sqrt{x+5}-\sqrt{x+2}\)?
Câu 4:
ĐKXĐ: \(x\le9\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x-4}=a\\\sqrt{9-x}=b\end{matrix}\right.\) ta có hệ:
\(\left\{{}\begin{matrix}a-b=-1\\a^3+b^2=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=a+1\\a^3+b^2=5\end{matrix}\right.\)
\(\Rightarrow a^3+\left(a+1\right)^2=5\)
\(\Leftrightarrow a^3+a^2+2a-4=0\) \(\Rightarrow a=1\)
\(\Rightarrow\sqrt[3]{x-4}=1\Rightarrow x-4=1\Rightarrow x=5\)
5.
ĐKXĐ: \(x\ge-\frac{17}{16}\)
\(\Leftrightarrow8x^2-15x-23-\left(x+1\right)\sqrt{16x+17}=0\)
\(\Leftrightarrow\left(x+1\right)\left(8x-23\right)-\left(x+1\right)\sqrt{16x+17}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\8x-23=\sqrt{16x+17}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow16x+17-2\sqrt{16x+17}-63=0\)
Đặt \(\sqrt{16x+17}=t\ge0\)
\(\Rightarrow t^2-2t-63=0\Rightarrow\left[{}\begin{matrix}t=9\\t=-7\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{16x+17}=9\Leftrightarrow x=\frac{32}{3}\)
Cho biểu thức
A= \(\text{[}1-\frac{\sqrt{x}}{1+\sqrt{x}}\text{]}:\text{[}\frac{\sqrt{x}+3}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\)
a, Rút gọn A
b, Tìm x để A<0
a: \(A=\dfrac{1}{\sqrt{x}+1}:\left(\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
\(=\dfrac{1}{\sqrt{x}+1}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
b: Để A<0 thì \(\sqrt{x}-2< 0\)
hay 0<x<4
Giaỉ phương trình:
a) \(\sqrt{16\text{x}-48}-6\sqrt{\dfrac{x-3}{4}}+\sqrt{4\text{x}-12}=5\)
b) \(\sqrt{1-10\text{x}+25\text{x}^2}-4=2\)
Cho biểu thức
A=\(\text{[}1-\frac{\sqrt{x}}{1+\sqrt{x}}\text{]}:\text{[}\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\)
a, Rút gọn A
b, Tìm x để A= \(\frac{1}{2}\)
a) A= (\(\left(\frac{1+\sqrt{x}}{1+\sqrt{x}}-\frac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x-2}\right)}+\frac{\sqrt{x}+2}{x-2\sqrt{x}-3\sqrt{x}+6}\right)\)
A=\(\left(\frac{1+\sqrt{x}-\sqrt{x}}{1+\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}\right)\)
A= \(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
A=\(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
A=\(\left(\frac{1}{1+\sqrt{x}}\right):\left(\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
A=\(\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
b) Để A = \(\frac{1}{2}\)
thì \(\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{1}{2}\)
=> 2\(\sqrt{x}-4\)=\(\sqrt{x}+1\)
=> \(\sqrt{x}=5\)
=> x = 25
1)\(\sqrt{x+3}\) > 2
2) \(\dfrac{1+\sqrt{x}}{\sqrt{x}-2}\)<1
3) \(\left(\sqrt{x}-1\right)\).\(\left(\sqrt{x}-3\right)\)-5=\(\sqrt{x}\) \(\left(\sqrt{x}+2\right)-5\)
tìm x mn giúp mình nha plsss
1: ĐKXĐ: x+3>=0
=>x>=-3
\(\sqrt{x+3}>2\)
=>x+3>4
=>x>4-3=1
2: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}< 1\)
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-1< 0\)
=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
=>\(\dfrac{3}{\sqrt{x}-2}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
3: ĐKXĐ: x>=0
\(\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-5=\sqrt{x}\left(\sqrt{x}+2\right)-5\)
=>\(x-4\sqrt{x}+3-5=x+2\sqrt{x}-5\)
=>\(x-4\sqrt{x}-2-x-2\sqrt{x}+5=0\)
=>\(-6\sqrt{x}+3=0\)
=>\(-6\sqrt{x}=-3\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>x=1/4(nhận)
bạn tách từng câu ra mik suy nghĩ từng câu