cho 2 đa thức:
A(x)=2x^3+2x-3x^2+1 B(x)=2x^2+3x^3-x-5
Cho 2 đa thức p(x)=4x^3+2x-3+2x-2x^2-1 và q(x)=6x^3-3x+5-2x+3x^2.
a. Tìm bậc của p(x) và q(x)
b. Tìm đa thức m(x) sao cho m(x)=p(x)+q(x)
a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)
Bậc của P(x) là 3
\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)
Bậc của Q(x) là 3
b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)
Bài 4. Cho hai đa thức: P(x) = (4x + 1 - x ^ 2 + 2x ^ 3) - (x ^ 4 + 3x - x ^ 3 - 2x ^ 2 - 5) Q(x) = 3x ^ 4 + 2x ^ 5 - 3x - 5x ^ 4 - x ^ 5 + x + 2x ^ 5 - 1 a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm, dần của biển. b) Tính P(x) + 20(x) 3P(x) + 0(x)
Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1
a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)
\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)
\(=-x^4+3x^3+x^2+x+6\)
\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)
\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)
\(=-x^5-2x^4-2x-1\)
b: Bạn ghi lại đề đi bạn
bài4: cho 3 đa thức: A(x)= 5x^3 - 2x; B(x)= 3x^2 + 2x -1 ; C(x)= 2x^3 +3x - 3x^2 +1
a) tính A(x) + B(x) B) A(x) - C(x)
c)tìm đa thức M(x) biest M(x) - B(x) = C(x) d) chứng tỏ x= 1 phần 3 là một nghiệm của đa thức B(x)
a: A(x)+B(x)
=5x^3-2x+3x^2+2x-1
=5x^3+3x^2-1
b: A(x)-C(x)
=5x^3-2x-2x^3+3x^2-3x-1
=3x^3+3x^2-5x-1
c: M(x)=B(x)+C(x)
=3x^2+2x-1+2x^3-3x^2+3x+1
=2x^3+5x
d: B(1/3)=3*1/9+2*1/3-1=1/3+2/3-1=0
=>x=1/3 là nghiệm của B(x)
cho hai đa thức:
f(x)=-x+2x^2-1/2+3x^5+5 và g(x)=3-x^5+1/3x^3+3x-2x^5-2x^2-1/3x^3
a)thu gọn và sắp xếp 2 đa thức trên theo lũy thừa giảm dần của biến
b) Tính f(x)+g(x)
c) Tìm ngiệm của đa thức
h(x)=f(x)+g(x)
1 . Cho f ( x ) = 4x³ - 2x² + x - 5 g ( x ) = x³ + 4 x² - 3x + 2 h ( x ) = -3 x ³ + x² + x - 2 Tính : a ) f ( x ) + g ( x ) b ) g ( x ) - h ( x ) 2 . Tìm nghiệm đa thức : a , 7 - 2x b , ( x + 1 ) ( x - 2 ) ( 2x - 1 ) c , 2x + 5 d , 3x ² + x 3 . Chứng minh rằng các đa thức sau không có nghiệm : a , f ( x ) = x ² + 1 b , ( 2x + 1 ) ² + 3
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
mù mắt xD ghi rõ đề đi bạn ơi !
Dịch:
Cho \(\hept{\begin{cases}f\left(x\right)=4x^3-2x^2+x-5\\g\left(x\right)=x^3+4x^2-3x+2\\h\left(x\right)=-3x^2+x^2+x-2\end{cases}}\)
Tính a) \(f\left(x\right)+g\left(x\right)\)
b) \(g\left(x\right)-h\left(x\right)\)
2. Tìm nghiệm của đa thức
a) \(7-2x\)
b) (x+1)(x-2)(2x-1)
c) 2x+5
d) 3x2+x
3. CMR các đa thức sau không có nghiệm
\(a,f\left(x\right)=x^2+1\)
\(b,\left(2x+1\right)^2+3\)
Bài 1: Rút gọn các biểu thức sau:
a, A = (x-2).(2x-1) - 2x (x+3)
b, B = (3x-2).(2x+1) - (6x-1).(x+2)
c, C = 6x.(2x+3) - (4x-1).(3x-2)
d, D = (2x+3).(5x-2)+(x+4).(2x-1) - 6x.(2x-3)
Bài 2: Chứng tỏ rằng các đa thức không phụ thuộc vào biến.
a, 2x(3x-5).(x+11) - 3x.(2x+3).(x+7)
b, (x2+5x-6).(x-1) - (x+2).(x2-x+1) - x(3x-10)
c, (x2+x+1).(x-1) - x2(x+1) + x2 - 5
Bài 1
A= (x-2)(2x-1)-2x(x+3)=2x2-x-4x+2-2x2-6x=-11x+2
Bài 1:
a) \(A=\left(x-2\right)\left(2x-1\right)-2x\left(x+3\right)\)
\(A=2x^2-x-4x+2-2x^2-6x\)
\(A=-11x+2\)
b) \(B=\left(3x-2\right)\left(2x+1\right)-\left(6x-1\right)\left(x+2\right)\)
\(B=6x^2+3x-4x-2-6x^2-12x+x+2\)
\(B=-12x\)
c) \(C=6x\left(2x+3\right)-\left(4x-1\right)\left(3x-2\right)\)
\(C=12x^2+18x-12x^2+8x+3x-2\)
\(C=29x-2\)
d) \(D=\left(2x+3\right)\left(5x-2\right)+\left(x+4\right)\left(2x-1\right)-6x\left(2x-3\right)\)
\(D=10x^2-4x+15x-6+2x^2-x+8x-4-12x^2+18x\)
\(D=36x-10\)
Bài 2:
a: Ta có: \(2x\left(3x-5\right)\left(x+11\right)-3x\left(2x+3\right)\left(x+7\right)\)
\(=2x\left(3x^2+33x-5x-55\right)-3x\left(2x^2+14x+3x+21\right)\)
\(=6x^3+56x^2-110x-6x^2-51x^2-63x\)
\(=-117x\)
b: Ta có: \(\left(x^2+5x-6\right)\left(x-1\right)-\left(x+2\right)\left(x^2-x+1\right)-x\left(3x-10\right)\)
\(=x^3+4x^2-11x+6-\left(x^3-x^2+x+2x^2-2x+2\right)-3x^2+10x\)
\(=x^3+x^2-x+6-x^3-x^2+x-2\)
=4
c: Ta có: \(\left(x^2+x+1\right)\left(x-1\right)-x^2\left(x+1\right)+x^2-5\)
\(=x^3-1-x^3-x^2+x^2-5\)
=-6
Bài 1: Phân tích đa thức thành nhân tử
a) (6x+3)-(2x-5)(2x+1)
b) (3x-2)(4x-3)-(2-3x)(x-1)-2(3x-2)(x+1)
Bài 2*:Phân tích đa thức thành nhân tử
a) (a-b)(a+2b)-(b-a)(2a-b)-(a-b)(a+3b)
b) 5xy3-2xy2-15y2+6z
c) (x+y)(2x-y)+(2x-y)(3x-y)-(y-2x)
d) ab3c2-a2b2c2+ab2c3-a2bc
e) x2(y-z)+y2(z-x)+z2(x-y)
f) x2-6xy+9y2+4x-12y
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
Bài 1: Cho đa thức f(x)= \(2x^3-x^5+3x^4+x^2-0,5x^3-2x^2-x^4+1.\)
a) Thu gọn và xác định bậc của đa thức trên.
b) Sắp xếp đa thức theo lũy thừa giảm dần của biến.
Bài 2: Cho A(x)=\(3x^5+2x^4-4x^2-2x+1\)và B(x)=\(-x^4+3x^3-2x^2+x^3-3x+2-3x^{\text{4}}.\)
a) Thực hiện thu gọn ( nếu có) các đa thức trên.
b) Tính 2A(x)+3B(x); 4A(x)-5B(x).
Cho đa thức: A(x) = 2x^4 – 5x^3 + 7x – 5 + 4x^3 + 3x^2 + 2x + 3.
B(x) = 5x^4 - 3x^3 + 5x – 3x^4 – 2x^3 + 9 – 6x
C(x) = x^4 + 4x^2 + 5.
a, Thu gọn và sắp xếp các hạng tử của đa thức A(x) và B(x) theo lũy thừa giảm dần của biến, cho biết bậc, hệ số cao nhất và hệ số tự do của A(x) và B(x).
b, Biết M(x) – A(x) = B(x); N(x) + A(x) = B(x), tính M(x) và N(x).
c, Biết Q(x) = A(x) – B(x), không thực hiện phép tính, hãy cho biết Q(x) bằng bao nhiêu?
d, Chứng minh rằng C(x) không có nghiệm
GIÚP MÌNH VỚI Ạ VÌ MAI MÌNH THI HK2 MÀ VẪN CHƯA HIỂU BÀI :,(
a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)
\(B\left(x\right)=2x^4-5x^3-x+9\)
\(C\left(x\right)=x^4+4x^2+5\)
A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2
B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9
b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7
N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11
c: Q(x)=-N(x)=4x^3+3x^2+10x-11