Giải pương trình:
\(\left|x-4\right|+\left|x-9\right|=5\)
Bài Tập: Giải phương trình :
a) (x + 5)(2x - 3) = 0
b) \(\left(x^2-9\right)\left(4-x\right)=0\)
c) \(\left(2x+3\right)\left(4-5x\right)=0\)
d) \(2\left(x+3\right)\left(x-4\right)=0\)
e) \(\left(x^2-9\right)\left(4-x\right)=0\)
f) \(\left(2x+3\right)\left(x^2-16\right)=0\)
a: \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)
c: \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\5x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)
=>x+3=0 hoặc x-4=0
=>x=-3 hoặc x=4
e: \(\Leftrightarrow\left(x-3\right)\left(x+3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=4\end{matrix}\right.\)
f: \(\Leftrightarrow\left(2x+3\right)\left(x-4\right)\left(x+4\right)=0\)
hay \(x\in\left\{-\dfrac{3}{2};4;-4\right\}\)
a, \(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{3}{2}\end{matrix}\right.\)
b, \(\Leftrightarrow\left[{}\begin{matrix}x^2-9=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm3\\x=4\end{matrix}\right.\)
c, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\4-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{4}{5}\end{matrix}\right.\)
d, \(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
e, tương tự d
f, \(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\pm4\end{matrix}\right.\)
Giải các bất phương trình sau :
\(a.4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(b.\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
c. \(\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)
Giải phương trình \(\left|x-4\right|+\left|x-9\right|=5\)
|x-4|+|x-9|=|x-4|+|9-x| >/ |x-4+9-x|=5
đẳng thức xảy ra <=> (x-4)(9-x) >/ 0 <=> 4 </ x </ 9
đến đây tự kết luân
giải các pương trình chứa dấu giá trị tuyệt đối:
\(a,\left|4+2x\right|=-4x\\ b,\left|-2,5x\right|=x-12\\ c,\left|-2x\right|+x-5x-3=0\)
a) \(\left|4+2x\right|=-4x\)
TH1 : \(4+2x\ge0\Leftrightarrow2x\ge-4\Leftrightarrow x\ge-2\)
\(4+2x=-4x\)
\(\Leftrightarrow2x+4x=-4\)
\(\Leftrightarrow6x=-4\)
\(\Leftrightarrow x=-\dfrac{2}{3}\) (t/m)
TH2 : \(4+2x< 0\Leftrightarrow2x< -4\Leftrightarrow x< -2\)
\(\text{- (4 + 2x) = -4x}\)
\(\Leftrightarrow-4-2x=-4x\)
\(\Leftrightarrow-2x+4x=4\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\) (ko t/m)
\(S=\left\{-\dfrac{2}{3}\right\}\)
b) \(\left|-2,5x\right|=x-12\)
TH1 : \(-2,5x\ge0\Leftrightarrow x\le0\)
\(-2,5x=x-12\)
\(\Leftrightarrow-2,5x-x=-12\)
\(\Leftrightarrow-3,5x=-12\)
\(\Leftrightarrow x=\dfrac{24}{7}\) (ko t/m)
TH2 : \(-2,5x< 0\Leftrightarrow x>0\)
\(\text{2,5x = x - 12}\)
\(\Leftrightarrow2,5x-x=-12\)
\(\Leftrightarrow1,5x=-12\)
\(\Leftrightarrow x=-8\) (ko t/m)
\(S=\varnothing\)
c) \(\left|-2x\right|+x-5x-3=0\)
\(\Leftrightarrow\left|-2x\right|-4x-3=0\)
\(\Leftrightarrow\left|-2x\right|=3+4x\)
TH1 : \(-2x\ge0\Leftrightarrow x\le0\)
\(-2x=3+4x\)
\(\Leftrightarrow-2x-4x=3\)
\(\Leftrightarrow-6x=3\)
\(\Leftrightarrow x=-\dfrac{1}{2}\) (t/m)
TH2 : \(-2x< 0\Leftrightarrow x>0\)
\(\text{2x = 3 + 4x}\)
\(\Leftrightarrow2x-4x=3\)
\(\Leftrightarrow-2x=3\)
\(\Leftrightarrow x=-\dfrac{3}{2}\) (ko t/m)
\(S=\left\{-\dfrac{1}{2}\right\}\)
giải phương trình
\(\left(3-x\right)\cdot\sqrt{\left(3+x\right)\cdot\left(9+x^2\right)}=4\sqrt{5\cdot\left(3-x\right)}\)
giải phuong trình \(\left(3+x\right)\cdot\sqrt{\left(3+x\right)\cdot\left(9+x^2\right)}=4\cdot\sqrt{5\cdot\left(3-x\right)}\)
Giải phương trình
\(\sqrt{x+9}\)+5\(\sqrt{x+6}\)=5+\(\sqrt{\left(x+9\right)\left(x+6\right)}\)
Đặt:\(\sqrt{x+9}=v;\sqrt{x+6}=u\)
Ta có: \(v+5u=5+vu\Leftrightarrow-v\left(u-1\right)+5\left(u-1\right)\Leftrightarrow\left(5-v\right)\left(u-1\right)\)
\(\left\{{}\begin{matrix}5-v=0\Leftrightarrow5=\sqrt{x+9}\Leftrightarrow x=16\left(N\right)\\u-1=0\Leftrightarrow\sqrt{x+6}=1\Leftrightarrow x=-5\left(N\right)\end{matrix}\right.ĐKXĐ:x>=-6\)
\(S=\left\{16,-5\right\}\)
Câu trên mình quên -5>-6
Đặt: \(\sqrt{x+9}=v;\sqrt{x+6}=u\)
Ta có: \(v+5u=5+vu\)
\(\Leftrightarrow v+5u-5-uv=0\)
\(\Leftrightarrow-v\left(u-1\right)+5\left(u-1\right)\)
\(\Leftrightarrow\left(5-v\right)\left(u-1\right)\)
\(\left\{{}\begin{matrix}5-v=0\Leftrightarrow5=\sqrt{x+9}\Leftrightarrow x=16\left(N\right)\\u-1=0\Leftrightarrow\sqrt{x+6}=1\Leftrightarrow x=-5\left(L\right)\end{matrix}\right.\) ĐKXĐ:\(x>=-6\)
\(S=\left\{16\right\}\)
\(\sqrt{x+9}+5\sqrt{x+\text{6}}=5+\sqrt{\left(x+9\right)\left(x+\text{6}\right)}\Leftrightarrow\sqrt{x+9}+5=5+\sqrt{x+9}\Leftrightarrow\sqrt{x+9}-\sqrt{x+9}=0\Leftrightarrow x+9-x-9=0\Leftrightarrow0=0\)
Vậy x vô số nghiệm
Giải hệ phương trình \(\left\{{}\begin{matrix}3\left|x-1\right|+2\left(x-y\right)=4\\4\left|x-1\right|-\left(x-y\right)=9\end{matrix}\right.\)
(mink đag cần gấp)
Ta có: \(\left\{{}\begin{matrix}3\left|x-1\right|+2\left(x-y\right)=4\\4\left|x-1\right|-\left(x-y\right)=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12\left|x-1\right|+8\left(x-y\right)=16\\12\left|x-1\right|-3\left(x-y\right)=27\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}11\left(x-y\right)=-11\\3\left|x-1\right|+2\left(x-y\right)=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\3\left|x-1\right|=4-2\left(x-y\right)=4-2\cdot\left(-1\right)=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\\left|x-1\right|=2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=-1\\x-1=2\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x-1=-2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=x+1=3+1=4\\x=3\end{matrix}\right.\\\left\{{}\begin{matrix}y=x+1=-1+1=0\\x=-1\end{matrix}\right.\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(3;4\right);\left(-1;0\right)\right\}\)
Giải phương trình:
\(\left(x-9\right)^4+\left(x-10\right)^4=\left(19-2x\right)^4\)
\(\left(6-x\right)^5+\left(x-4\right)^5=32\)
p/s: Làm hộ mik cách đặt ẩn phụ nhá : )
À thôi mik tự làm đc rồi ạ !