Những câu hỏi liên quan
Thai Nguyen
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
14 tháng 8 2018 lúc 10:38

Bạn tham khảo cách chứng minh tại đây :

Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến

Áp dụng : Theo BĐT \(AM-GM\) ta có :

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta được :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)

Dấu \("="\) xảy ra khi \(a=b=c\)

Bình luận (0)
Phùng Minh Phúc
Xem chi tiết
Akai Haruma
23 tháng 1 2022 lúc 16:40

Lời giải:

Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:

$a+b\geq 2\sqrt{ab}$

$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$

$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$

Ta có đpcm 

Dấu "=" xảy ra khi $a=b$

Bình luận (0)
Deal With It
Xem chi tiết
TÔi NgU xi
27 tháng 5 2017 lúc 13:31

cố gắng là làm được

Bình luận (0)
Đỗ Thành Nam
27 tháng 5 2017 lúc 13:40

câu 2:

a(b-c)-b(a+c)+c(a-b)=-2bc

ta có: 

a( b-c ) - b ( a +c )+ c(a-b)

=ab-ac-(ba+bc)+(ca-cb)

=ab-ac-ba-bc+ca-cb

=ab-ba-ac+ca-bc-cb

=0-0-bc-cb

=bc+(-cb)

=-2cb    hay -2bc

b)a(1-b)+a(a^2-1)=a(a^2-b)

Ta có:

a(1-b) + a(a^2-1)

=a-ab+(a^3-a)

=a-ab+a^3-a

=a-a-ab+a^3

=0-ab+a^3

=-ab+a^3

=a(-b +a^2)     hay a(a^2-b)

Bình luận (0)
Nano Thịnh
Xem chi tiết
khoa le nho
Xem chi tiết
khoa le nho
15 tháng 3 2020 lúc 11:05

Giúp mình 

Bình luận (0)
 Khách vãng lai đã xóa
Phùng Gia Bảo
15 tháng 3 2020 lúc 21:43

Không mất tính tổng quát giả sử \(a\ge b\ge c\). Khi đó, ta dễ dàng có được \(a^n\ge b^n\ge c^n\)và \(\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\)

Áp dụng bất đẳng thức Chebyshev, ta có: \(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\ge\frac{1}{3}\left(a^n+b^n+c^n\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

P/s: Đây là một bước nhỏ trong một cách chứng minh dạng tổng quát của bđt Nesbit

Bình luận (0)
 Khách vãng lai đã xóa
khoa le nho
16 tháng 3 2020 lúc 10:26

ủa trebyshev có dạng như vậy hả bạn 

Bình luận (0)
 Khách vãng lai đã xóa
trần xuân quyến
Xem chi tiết
Lê Quốc Anh
21 tháng 11 2018 lúc 20:46

T = (1+a)(1+b)(1+c) = 1 + (a + b + c) + (ab + bc + ac) + abc.

Áp dụng \(A+B+C\ge3\sqrt[3]{ABC}\left(A,B,C\ge0\right)\),

ta có: \(T\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{\left(abc\right)^3}=\left(1+\sqrt[3]{abc}\right)^3\left(đpcm\right)\)

Chúc bạn học tốt

Bình luận (0)
Đàm Vũ Đức Anh
Xem chi tiết
Lightning Farron
11 tháng 4 2017 lúc 19:16

đề có cho thỏa mãn gì ko

Bình luận (0)
Hung nguyen
12 tháng 4 2017 lúc 9:28

Bài này mình từng giải rồi. Đề đúng phải là:

Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.

Tìm GTNN của \(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\)

Bài giải:

Ta có: \(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge\dfrac{3a}{4}\)

\(\Leftrightarrow\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\dfrac{6a-b-c-2}{8}\left(1\right)\)

Tương tự \(\left\{{}\begin{matrix}\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\dfrac{6b-c-a-2}{8}\left(2\right)\\\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{6c-a-b-2}{8}\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được:

\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{6a-b-c-2}{8}+\dfrac{6b-c-a-2}{8}+\dfrac{6c-a-b-2}{8}\)

\(=\dfrac{a+b+c}{2}-\dfrac{3}{4}\ge\dfrac{3\sqrt[3]{abc}}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)

Dấu = xảy ra khi \(a=b=c=1\)

PS: Chép đề thì cẩn thận vô bạn.

Bình luận (0)
Lightning Farron
12 tháng 4 2017 lúc 11:38

1 cach giai khac cho Cosi va C-S Câu hỏi của Hoàng Phúc - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
Hồ Thị Hồng Nghi
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 8:10

Áp dụng BĐT cosi:

\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)

Dấu \("="\Leftrightarrow a=b=c\)

 

Bình luận (0)
nguyenthihoaithuong
Xem chi tiết
Lê Minh Anh
8 tháng 9 2016 lúc 18:23

 \(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(=\left(a^3+3a^2b+3b^2a+b^3\right)+3c\left(a^2+2ab+b^2\right)+3c^2\left(a+b\right)+c^3\)

\(=a^3+3a^2b+3b^2a+b^3+3a^2c+6abc+3b^2c+3ac^2+3bc^2+c^3\)

\(=a^3+b^3+c^3+\left(3a^2b+3b^2a+3b^2c+3c^2b+3a^2c+3c^2a+6abc\right)\)

\(=a^3+b^3+c^3+3\left(a^2b+b^2a+b^2c+c^2b+a^2c+c^2a+2abc\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Bình luận (0)