Giải và biện luận phương trình chứa tham số m:
\(\dfrac{mx+5}{10}+\dfrac{x+m}{4}=\dfrac{m}{20}\)
Giải và biện luận phương trình chứa tham số m:
a) \(\dfrac{mx+5}{10}+\dfrac{x+m}{4}=\dfrac{m}{20}\)
b) \(\dfrac{x-4m}{m+1}+\dfrac{x-4}{m-1}=\dfrac{x-4m-3}{m^2-1}\)
Giúp mình với!!! Mình cần gấp!!!
Giải và biện luận phương trình với m là tham số:
a) \(m^2\left(x-2\right)-3m=x+1\)
b) \(\dfrac{mx+5}{10}+\dfrac{x+m}{4}=\dfrac{m}{20}\)
a: =>m^2x-2m^2-3m-x-1=0
=>x(m^2-1)=2m^2+3m+1
=>x(m-1)(m+1)=(m+1)(2m+1)
Để phương trình có nghiệm duy nhất thì (m-1)(m+1)<>0
=>m<>1 và m<>-1
Để phương trình vô nghiệm thì m-1=0
=>m=1
Để phương trình có vô số nghiệm thì m+1=0
=>m=-1
b: =>2mx+10+5x+5m=m
=>x(2m+5)=m-5m-10=-4m-10
=>Phương trình luôn có nghiệm
Để PT có vô số nghiệm thì 2m+5=0
=>m=-5/2
Để PT có nghiệm thì 2m+5<>0
=>m<>-5/2
Giải và biện luận phương trình sau:
a, \(\dfrac{mx+5}{10}+\dfrac{x+10}{4}\)= \(\dfrac{m}{20}\)
\(\dfrac{mx+5}{10}+\dfrac{x+10}{4}=\dfrac{m}{20}\)
\(\dfrac{2mx+10}{20}+\dfrac{4x+40}{20}=\dfrac{m}{20}\)
\(2mx+10+4x+40=m\)
\(2mx-m+4x+50=0\)
\(m\left(2x-1\right)+2\left(2x-1\right)+52=0\)
\(\left(m+2\right)\left(2x-1\right)=-52\)
Dễ thấy với \(m=-2\) ta có đẳng thức sai
Với m \(\ne-2\)
\(\left(m+2\right)\left(2x-1\right)=-52\)
\(\Rightarrow2x-1=\dfrac{-52}{m-2}\Rightarrow2x=\dfrac{m-50}{m-2}\)
\(\Rightarrow x=\dfrac{m-50}{2\left(m-2\right)}\)
Giải và biện luận phương trình:
\(\dfrac{mx-m-3}{x+1}=1\)
ĐKXĐ: \(x\ne-1\)
Ta có:
\(\dfrac{mx-m-3}{x+1}=1\)
\(\Rightarrow mx-m-3=x+1\)
\(\Leftrightarrow\left(m-1\right)x=m+4\)
- Với \(m=1\) pt trở thành: \(0=5\) (ktm) \(\Rightarrow\) pt vô nghiệm
- Với \(m=-\dfrac{3}{2}\) pt trở thành:
\(-\dfrac{5}{2}x=\dfrac{5}{2}\Rightarrow x=-1\) (ktm ĐKXĐ) \(\Rightarrow\) pt vô nghiệm
- Với \(m\ne\left\{-\dfrac{3}{2};1\right\}\Rightarrow x=\dfrac{m+4}{m-1}\)
Vậy:
- Với \(m=\left\{-\dfrac{3}{2};1\right\}\) pt vô nghiệm
- Với \(m\ne\left\{-\dfrac{3}{2};1\right\}\) pt có nghiệm duy nhất \(x=\dfrac{m+4}{m-1}\)
Giải và biện luận bất phương trình sau
\(\dfrac{mx-m+1}{x-1}< 0\)
Phương trình tương đương
\(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)\left(x-2\right)\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)x-2m-2\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1-m-1\right)x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-2x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=m+2\\x\ne2\end{matrix}\right.\)
Nếu m = 0 thì phương trình vô nghiệm
Nếu m ≠ 0 thì S = {m + 2}
Giải và biện luận phương trình sau theo tham số m:
\(\dfrac{ 2m-1 }{ x-1 } = m-2\)
mình đg cần gấp, giúp mình nhé
x= 3m-3/m-2
Tại m =2 thì pt vô nghiệm
Tại m khác 2 thì có nghiệm duy nhất vì đây là hàm bậc nhất
Giải và biện luận phương trình (m là tham số)
a,\(\dfrac{x-m}{x+5}+\dfrac{x+5}{x+m}=2\)
b,\(\dfrac{3}{x-m}-\dfrac{1}{x-2}=\dfrac{2}{x-2m}\)
Giải giúp em với ạ:
Cho hệ phương trình: mx + 4y = 10 - m và x + my = 4 (m là tham số)
a, giải hệ phương trình khi m = √2
b, giải và biện luận hệ phương trình theo m
Cô làm câu b thôi nhé :)
Ta có hệ \(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\left(1\right)\\x=4-my\end{cases}}\)
Với \(4-m^2=0\Leftrightarrow m=2\) hoặc \(m=-2\)
Xét m =2, phương trình (1) tương đương 0.x = 0. Vậy hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)
Xét m = -2, phương trình (1) tương đương 0.x = 20. Vậy hệ phương trình vô nghiệm.
Với \(4-m^2\ne0\Leftrightarrow m\ne2\) và \(m\ne-2\), phương trình (1) tương đương \(y=\frac{10-5m}{4-m^2}=\frac{5}{2+m}\)
Từ đó : \(x=\frac{8-m}{2+m}\)
Kết luận:
+ m = 2, hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)
+ m = - 2, hệ phương trình vô nghiệm.
+ \(m\ne2;m\ne-2\) hệ có 1 nghiệm duy nhất \(\hept{\begin{cases}x=\frac{8-m}{2+m}\\y=\frac{5}{2+m}\end{cases}}\)
Chúc em học tập tốt :)
hehe
Hỏi từ lâu nhưng bây giờ em trả lời lại cho vui