Cho a,b là các số dương thỏa mãn a+b=1 tìm GTNN của P=(1-1/a^2)(1-1/b^2)
cho a,b là các số thực dương thỏa mãn a+b =<1.Tìm gtnn của A=1/(a^2+b^2)+1/2ab
Ta có : (a-b)^2 >= 0 với mọi a,b
<=> a^2-2ab+b^2 >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+2ab+b^2 >= 4ab
<=> (a+b)^2 >= 4ab
Với a,b > 0 thì ta chia 2 vế cho ab .(+b) được :
a+b/ab >= 4/a+b
<=>1/a + 1/b >=4ab
Áp dụng bđt trên thì A >= 4/(a^2+b^2+2ab) = 4/(a+b)^2 >= 4/1^2 = 4
Dấu "=" xảy ra <=> a=b ; a+b =1 <=> a=b=1/2
Vậy Min A = 4 <=> x = y= 1/2
`a+ble1<=>(a+b)^2le1`
Áp dụng bđt `1/(a)+1/bge4/(a+b)` ta có:
`Age4/(a^2+2ab+b^2)=4/(a+b)^2=4/1=4`
Dấu `=` xảy ra khi:`a^2+b^2=2ab<=>(a-b)^2=0<=>a=b` và `a+b=1`
`<=>a=b=1/2`
Vậy GTNN của `A=4` khi và chỉ khi `a=b=1/2`
Cho a,b là các số thực dương thỏa mãn ab=1. Tìm GTNN của:
\(P=\dfrac{a^2}{1+b}+\dfrac{b^2}{1+a}\)
Cho a, b là các số dương thỏa mãn a + b = 2. Tìm GTNN của: M=a^2/a+1 + b^2/b+1
Áp dụng BĐT Cosi
\(A=\frac{a^2}{a+1}+\frac{b^2}{b+1}\ge2\sqrt{\frac{a^2}{a+1}+\frac{b^2}{b+1}}\)
\(\Leftrightarrow A\ge\frac{2ab}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)
Đến đây bạn tự xử lí phần dấu "="
Nhật Quỳnh Cô si lỗi rồi kìa -_-
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}\)\(\ge\frac{\left(a+b\right)^2}{a+b+2}=\frac{4}{4}=1\)
Dấu "=" xảy ra tại a=b=1
Vậy..........................
Vâng ạ! Để mình xem lại
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của M=1/18(ab+bc+ca)-a^2/3a+1-b^2/3b+1-c^2/3c+1
Cho a,b là các số dương thỏa mãn ab=1. Tính GTNN của B=1/a+1/b+2/(a+b)
Cho a, b là các số dương thỏa mãn a+b=2. Tìm GTNN của M = 2(a^2+b^2)-6(a/b+b/a)+9(1/a^2+1/b^2)
Giúp tôi với
Cho a,b,c là các số dương thỏa mãn a+b+c+ab+bc+ca=6abc. Tìm GTNN của P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(a+b+c+ab+bc+ca=6abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
\(\Rightarrow\hept{\begin{cases}x+y+z+xy+yz+zx=6\\P=x^2+y^2+z^2\end{cases}}\)
\(6=x+y+z+xy+yz+zx\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)
\(\Leftrightarrow x+y+z\ge3\)
\(\Rightarrow P=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{9}{3}=3\)
Cho các số thực dương a, b thỏa mãn điều kiện: \(a+b< =1\). Tìm GTNN của biểu thức: \(P=\dfrac{b^2}{a^2b^2+b^2+1}+\dfrac{b}{2a}\)
Cho a,b,c là các số thực dương thỏa mãn \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{a+c+1}=2\)
Tìm GTNN của M=(a+b)(b+c)(c+a)
MÌnh nghĩ đề phải là tìm GTLN chứ
Ta có: \(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=2\)
\(\Rightarrow\frac{1}{a+b+1}=\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\ge2\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}\)
Tương tự: \(\frac{1}{b+c+1}\ge2\sqrt{\frac{\left(a+b\right)\left(c+a\right)}{\left(a+b+1\right)\left(c+a+1\right)}}\)
\(\frac{1}{c+a+1}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\)
Nhân lại ta có: \(\frac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\ge\frac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)
Dấu = khi a=b=c=1/4