2xy + x -14y=21
tìm x,y biết 2xy+x-14y=2
\(2xy+x-14y=2\)
\(\Leftrightarrow x\left(2y+1\right)-7\left(2y+1\right)=-5\)
\(\Leftrightarrow\left(x-7\right)\left(2y+1\right)=-5\)
Xét từng trường hợp sẽ ra
2xy+x-14y=2
=> 2xy+x-14y-7=2-7
=>(2xy+x)-(14y+7)=-5
=>x(2y+1)-7(2y+1)=-5
=>(2y+1)(x-7)=-5
=>(2y+1)(x-7)=-1.5=1.(-5)
do đó :
Nếu 2y+1=-1 =>2y=-2 =>y=-1
thì x-7=5 =>x=12
Nếu 2y+1=1 =>2y=0 =>y=0
thì x-7=-5 =>x=2
Tìm x,y thoả mãn: x2+2y2+2xy-14y+49=0
\(x^2+2y^2+2xy-14y+49=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-7\right)^2=0\)
Dấu '=' xảy ra khi y=7 và x=-7
\(\left(x+y\right)^2+\left(y-7\right)^2=0\)
\(\Rightarrow x=-7;y=-7\)
Mong cái này giúp được bạn nhé. ☺
phân tích đa thức sau thành nhân tử
3x(x-7) + 2xy -14y
\(3x\left(x-7\right)+2xy-14y\)
\(=3x\left(x-7\right)+2y\left(x-7\right)\)
\(=\left(x-7\right)\left(3x+2y\right)\)
#\(Toru\)
Tìm GTLN : -x^2- 3y^2-2xy+10x+14y-18
Đặt \(A=-x^2-3y^2-2xy+10x+14y-18\)
Ta có : \(-A=x^2+3y^2+2xy-10x-14y+18\)
\(-A=\left(x^2+2xy+y^2\right)+2y^2-10x-14y+18\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)\times5+25\right]+2y^2-4y+7\)
\(-A=\left(x+y-5\right)^2+2\left(y^2-2y+1\right)+5\)
\(-A=\left(x+y-5\right)^2+2\left(y-1\right)^2+5\)
Mà \(\left(x+y-5\right)^2\ge0\forall x;y\in R\)
\(\left(y-1\right)^2\ge0\forall y\in R\Rightarrow2\left(y-1\right)^2\ge0\forall y\in R\)
\(\Rightarrow-A\ge5\)
\(\Leftrightarrow A\le-5\)
Dấu " = " xảy ra khi:
\(\hept{\begin{cases}x+y-5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)
Vậy Max A = - 5 khi ( x ; y ) = ( 4 ; 1 )
14x - 14y - x2 + 2xy - y2 =
\(14x-14y-x^2+2xy-y^2\\ =14\left(x-y\right)-\left(x^2-2xy+y^2\right)\\ =14\left(x-y\right)-\left(x-y\right)^2\\ =\left(x-y\right)\left(14-x+y\right)\)
tìm gtnn của \(\text{Q=3y^2 -6x+x^2 +2xy-14y+200}\)
Lời giải:
$Q=x^2+3y^2+2xy-6x-14y+200$
$=(x^2+y^2+2xy)+2y^2-6x-14y+200$
$=(x+y)^2-6(x+y)+2y^2-8y+200$
$=(x+y)^2-6(x+y)+9+2(y^2-4y+4)+183$
$=(x+y-3)^2+2(y-2)^2+183\geq 0+2.0+183=183$
Vậy $Q_{\min}=183$. Giá trị này đạt được tại $x+y-3=y-2=0$
$\Leftrightarrow x=1; y=2$
tim x,y thoa man : x^2-4y^2=24 và 5x +14y -2xy=35
Cho biểu thức M=\(x^2+3y^2+10x-14y-2xy=11\)
Tìm Min,Max của A=x-y
Lời giải:
\(x^2+3y^2+10x-14y-2xy=11\)
$\Leftrightarrow (x^2-2xy+y^2)+2y^2+10x-14y=11$
$\Leftrightarrow (x-y)^2+10(x-y)+25+(2y^2-4y+2)=38$
$\Leftrightarrow (x-y+5)^2+2(y-1)^2=38$
$\Rightarrow (x-y+5)^2=38-2(y-1)^2\leq 38$
$\Rightarrow -\sqrt{38}\leq x-y+5\leq \sqrt{38}$
$\Leftrightarrow -\sqrt{38}-5\leq x-y\leq \sqrt{38}-5$
Vậy $A_{\min}=-\sqrt{38}-5$ và $A_{\max}=\sqrt{38}-5$
tìm GTNN, GTLN của S=x+y biết x^2 + 3y^2 + 2xy - 10x - 14y + 18 = 0
Làm nốt phần còn lại của bạn Thắng
(x + y - 5)2 + 2(y - 1)2 - 9 = 0
<=> 2(y - 1)2 = 9 - (S - 5)2 \(\ge0\)
\(\Leftrightarrow\left(S-5\right)^2\le9\)
\(\Leftrightarrow-3\le S-5\le3\)
\(\Leftrightarrow2\le S\le8\)
Vậy GTNN là 2 đạt được khi x = y = 1
GTLN là 8 đạt được khi (x, y) = (7, 1)
\(x^2+3y^2+2xy-10x-14y+18\)
\(\Rightarrow\left(x^2+2xy-10x+y^2-10y+25\right)+2y^2-4y-7=0\)
\(\Rightarrow\left(x+y-5\right)^2+2y^2-4y+2-9=0\)
\(\Rightarrow\left(x+y-5\right)^2+2\left(y^2-2y+1\right)-9=0\)
\(\Rightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2-9=0\)
....
x=7;y=±1 và x=y=1 và x=1; y=3 và x=y=3 và x=5;y=-1