Tính:
S = 1 - 2 + 22 - 23 + ... + 210
Kết quả của phép tính (1 + 2 + 22 + 23 + 24 + … + 210): 2047 bằng
(1 + 2 + 22 + 23 + 24 + … + 210): 2047
= [(1+210).210 : 2 ] : 2047
= [211. 105] : 2047
= 22155 : 2047
mình tính đến khúc này thì thấy chia ko hết :Đ
bạn xem lại đề hoặc có thể mik sai thật
Câu 13. Tính tổng S =1+2+ 22 + 23 + 25 + 26+ 27 + 28+ 29 + 210
Câu 14. Tìm tất cả các số tự nhiên n, sao cho 3n+ 2 chia hết cho n-2
làm cho mik gấp ạ , vui lòng giải thích các bước ạ , mik cảm ưnnn
Câu 13
S = 1 + 2 + 2² + ... + 2¹⁰
2S = 2 + 2² + 2³ + ... + 2¹¹
S = 2S - S
= (2 + 2² + 2³ + ... + 2¹¹) - (1 + 2 + 2² + ... + 2¹⁰)
= 2¹¹ - 1
= 2048 - 1
= 2047
Câu 14
3n + 2 = 3n - 6 + 8 = 3(n - 2) + 8
Để (3n + 2) ⋮ (n - 2) thì 8 ⋮ (n - 2)
⇒ n - 2 ∈ Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
⇒ n ∈ {-6; -2; 0; 1; 3; 4; 6; 10}
Mà n là số tự nhiên
⇒ n ∈ {0; 1; 3; 4; 6; 10}
a)Tính nhanh: A= 1+5+9+13+...+101
b)Cho B = 1+2+22+24+25+26+27+28+29+210+211.
Chứng tỏ B chia hết cho 7
c)Rút gọn biểu thức C = 1+2+22+23+24+...+299.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
3/
$C=1+2+2^2+2^3+...+2^{99}$
$2C=2+2^2+2^3+2^4+...+2^{100}$
$\Rightarrow 2C-C=2^{100}-1$
$\Rightarrow C=2^{100}-1$
Tính tổng S = C 10 0 + 2. C 10 1 + 2 2 . C 10 2 + ... + 2 10 . C 10 10
A. S = 2 10
B. S = 4 10
C. S = 3 10
D. S = 3 11
Đáp án C.
Cách 1: Tư duy tự luận
Xét khai triển 1 + x 10 = C 10 0 + C 10 1 x + C 10 2 x 2 + C 10 3 x 3 + ... + C 10 10 x 10 (*)
Với x = 2 thay vào (*) ta được
3 10 = 1 + 2 10 = C 10 0 + 2. C 10 1 + 2 2 . C 10 2 + ... + 2 10 . C 10 10
Cách 2: Sử dụng máy tính cầm tay
S = C 10 0 + 2. C 10 1 + 2 2 . C 10 2 + ... + 2 10 . C 10 10 = ∑ x = 0 10 C 10 x 2 x
Tính tổng S = C 10 0 + 2 . C 10 1 + 2 2 . C 10 2 + . . . + 2 10 . C 10 10
A . S = 2 10
B . S = 3 10
C . S = 4 10
D . S = 3 11
Rút gọn:
S= 2 + 22 + 23 + 24 + ... 210
\(S=2+2^2+2^3+...+2^{10}\)
\(2S=2\cdot\left(2+2^2+2^3+...+2^{10}\right)\)
\(2S=2^2+2^3+...+2^{11}\)
\(2S-S=2^2+2^3+...+2^{11}-2-2^2-...-2^{10}\)
\(S=2^{11}-2\)
Chỉnh đề:
\(S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S=2.\left(2+2^2+2^3+2^4+...+2^{10}\right)\)
\(2S=2^2+2^3+2^4+2^5+...+2^{11}\)
\(2S-S=\left(2^2+2^3+2^4+2^5+...+2^{11}\right)-\left(2+2^2+2^3+2^4+...+2^{10}\right)\)
\(S=2^{11}-2\)
\(#\)\(Wendy\) \(Dang\)
A = 2 + 22+ 23+24 + ...+ 210
tim x de A +2 + 2x-1
et o ettt
nhanh = tick
Sửa đề: A + 2 = 2x-1
\(A=2+2^2+2^3+2^4+\dots+2^{10}\\2A=2^2+2^3+2^4+2^5+\dots+2^{11}\\2A-A=(2^2+2^3+2^4+2^5+\dots+2^{11})-(2+2^2+2^3+2^4+\dots+2^{10})\\A=2^{11}-2\\\Rightarrow A+2=2^{11}\)
Mà: \(A+2=2^{x-1}\)
\(\Rightarrow2^{x-1}=2^{11}\)
\(\Rightarrow x-1=11\)
\(\Rightarrow x=11+1=12\)
bài 1:
a. S2 = 21+23+25+...+1001
b. S4 = 15+25+35+..+115
bài 2:
a. 2x-138= 23 .32
b. 5.(x+35) = 515
c. 814- ( x-305)=712
d. 20 - [ 7(x-3) +4] =2
e. 9x-1 =9
e. 5x-2 -32 = 24 - (28. 22 - 210 . 22)
Bài 1
S₂ = 21 + 23 + 25 + ... + 1001
Số số hạng của S₂:
(1001 - 21) : 2 + 1 = 491
⇒ S₂ = (1001 + 21) . 491 : 2 = 250901
--------
S₄ = 15 + 25 + 35 + ... + 115
Số số hạng của S₄:
(115 - 15) : 10 + 1 = 11
⇒ S₄ = (115 + 15) . 11 : 2 = 715
Bài 2
a) 2x - 138 = 2³.3²
2x - 138 = 8.9
2x - 138 = 72
2x = 72 + 138
2x = 210
x = 210 : 2
x = 105
b) 5.(x + 35) = 515
x + 35 = 515 : 5
x + 35 = 103
x = 103 - 35
x = 78
c) 814 - (x - 305) = 712
x - 305 = 814 - 712
x - 305 = 102
x = 102 + 305
x = 407
d) 20 - [7.(x - 3) + 4] = 2
7(x - 3) + 4 = 20 - 2
7(x - 3) + 4 = 18
7(x - 3) = 18 - 4
7(x - 3) = 14
x - 3 = 14 : 7
x - 3 = 2
x = 2 + 3
x = 5
e) 9ˣ⁻¹ = 9
x - 1 = 1
x = 1 + 1
x = 2
2:
a: \(2x-138=2^3\cdot3^2\)
=>\(2x-138=8\cdot9=72\)
=>2x=138+72=210
=>x=105
b: \(5\cdot\left(x+35\right)=515\)
=>x+35=103
=>x=103-35=68
c: \(814-\left(x-305\right)=712\)
=>x-305=814-712=102
=>x=102+305=407
d: \(20-\left[7\left(x-3\right)+4\right]=2\)
=>7(x-3)+4=18
=>7(x-3)=14
=>x-3=2
=>x=5
e: \(9^{x-1}=9\)
=>x-1=1
=>x=2
f: \(5^{x-2}-3^2=2^4-\left(2^8\cdot2^2-2^{10}\cdot2^2\right)\)
=>\(5^{x-2}-9=16-1024+4096\)
=>\(5^{x-2}=3097\)
=>\(x-2=log_53097\)
=>\(x=2+log_53097\)
Tính tổng G=21+22+23+24+25+26+27+28+29+210. Chứng minh rằng:
a)Suy ra bằng G=2048-2.
b)G⋮2 và 3.
G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
2.G = 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211
2G - G = (22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211) - (21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210)
G = 22 + 23 + 24 +25 + 26 + 27 + 28 + 29 + 210 + 211 - 21 -22 -23 -24 - 25 - 26 - 27 - 28 - 29 - 210
G = (22 -22) +(23 - 23) + (24 - 24) + (25 -25) + (26 - 26) +(27 - 27) +(28 -28) + (29 - 29) + (210 - 210) + (211 - 21)
G = 211 - 2
G = 2048 - 2 (đpcm)
b,
G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
D = 2.(1+ 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29)
Vì 2 ⋮ 2 nên D = 2.(1+2+22+23+24+25+26+27+28+29)⋮2 (đpcm)
G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210
G = (21 +22) +(23 +24)+(25+26) +(27+28) +(29+210)
G = 2.(1+2) + 23.(1 + 2) +25.(1+2) +27.(1+2) +29.(1+2)
G = 2.3 + 23.3 + 25.3 + 27.3 + 29.3
G = 3.(2 + 23 + 25 + 27 + 29)
Vì 3⋮ 3 nên G = 3.(2 +25 + 27+29) ⋮ 3 (đpcm)
Chứng minh rằng \(\frac{1}{^22}+\frac{1}{^23}+...+\frac{1}{^210}>\frac{9}{22}\)
Ta có:\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{10.10}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\left(1\right)\)
Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(A=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\)suy ra
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}>\frac{9}{22}\)
^^