Giải: (x^2+3x+2)(x^2+7x+12)=24
Giải phương trình:
(x^2 + 3x + 2)(x^2 + 7x + 12)=24
(x+1)(x+2)(x+3)(x+4)=24
(x+1)(x+4)(x+2)(x+3)=24
(x\(^2\)+5x+4)(x2 +5x+6)=24
Đặt x2+5x+5=t
\(\Rightarrow\)(t+1)(t-1)=24
\(\Rightarrow\) t2 -1=24
\(\Rightarrow\) t2-25=0
\(\Rightarrow\) (t-5)(t+5)=0
\(\Rightarrow\) (x2+5x)(x2+5x+10)=0
\(\Rightarrow\) x(x+5)(x+5)2=0
\(\Rightarrow\) x(x+5)3=0
\(\Rightarrow\) x=0 hoặc (x+5)3=0
Vậy x=0 hoặc x= -5
(Cần gấp: giải phương trình (x^2+3x+2)(x^2+7x+12)=24
(x^2+3x+2)(x^2+7X+12)=24
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
đặt \(x^2+5x+5=a\)=> ta có phương trình \(\Leftrightarrow\left(a-1\right)\left(a+1\right)=24\)
\(\Leftrightarrow a^2-1=24\)\(\Leftrightarrow a^2=25\Leftrightarrow a=\orbr{\begin{cases}5\\-5\end{cases}}\)
+)\(x^2+5x+5=5\)\(\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow x=\orbr{\begin{cases}5\\0\end{cases}}\)
+) \(x^2+5x+5=-5\)\(\Leftrightarrow x^2+5x+10=0\)\(\Rightarrowđenta=5^2-4.10=-15< 0\Rightarrow ptvonghiem\)
vậy \(x=\orbr{\begin{cases}0\\5\end{cases}}\)
( x^2 + 3x + 2 )( x^2 + 7x + 12 ) = 24
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
Đặt x2 + 5x + 5 = a = ta có : \(\Leftrightarrow\left(a-1\right)\left(a+1\right)=24\)
\(\Leftrightarrow a^2-1=24\Leftrightarrow a^2=25\Leftrightarrow a=\orbr{\begin{cases}5\\-5\end{cases}}\)
+)\(x^2+5x+5=5\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow x=\orbr{\begin{cases}5\\0\end{cases}}\)
+)\(x^2+5x+5=-5\Leftrightarrow x^2+5x+10=0\)
\(\Rightarrowđenta=5^2-4.10=-15< 0\Rightarrow ptvonghiem\)
\(Vay.x=\orbr{\begin{cases}5\\0\end{cases}}\)
Giải phương trình:
(x2+3x+2).(x2+7x+12)=24
(x2 + 3x + 2)(x2 + 7x + 12) = 24
=> (x + 1)(x + 2)(x + 3)(x + 4) = 24
=> (x2 + 5x + 4)(x2 + 5x + 6) = 24
Đặt a = x2 + 5x + 4 ta được:
a.(a + 2) = 24 => a2 + 2a - 24 = 0 => (a - 4)(a + 6) = 0 => a = 4 hoặc a = -6
+ Với a = 4 => x2 + 5x + 4 = 4 => x2 + 5x = 0 => x(x + 5) = 0 => x = 0 hoặc x = -5
+ Với a = -6 => x2 + 5x + 4 = -6 => x2 + 5x + 10 = 0, mà x2 + 5x + 10 > 0 => vô nghiệm
Vậy x = 0 , x = -5
Giải phương trình \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2-1=24\)
\(\Leftrightarrow\left(x^2+5x+5\right)^2=25\)
Mà \(x^2+5x+5>0\forall x\)
\(\Rightarrow x^2+5x+5=5\Rightarrow x\left(x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy pt có tập nghiệm S={0,-5}
pt <=> (x+1).(x+2).(x+3).(x+4) = 24
<=> [(x+1).(x+4)].[(x+2).(x+3)] = 24
<=> (x^2+5x+4).(x^2+5x+6) = 24
<=> (x^2+5x+5)^2-1 = 24
<=> (x^2+5x+5) = 25
=> x^2+5x+5 = 5 [ vì x^2+5x+5 = (x+2,5)^2-0,25 >= -0,25 > -5 ]
=> x=0 hoặc x=-5
Vậy pt có tập nghiệm S = {-5;0}
k mk nha
\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
Đặt \(t=x^2+5x+5\)ta có:
\(\left(t-1\right)\left(t+1\right)=24\)
\(\Leftrightarrow t^2-1=24\)
\(\Leftrightarrow t=\pm-5\)
Với t = 5 thì \(x^2+5x+5=5\Leftrightarrow x.\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Với t = -5 thì \(x^2+5x+5=-5\Leftrightarrow x^2+5x+10=0\)(vô nghiệm)
\(\Rightarrow PT=\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Giải phương trình: \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Rightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)-24=0\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Rightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-24=0\)
\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(x^2+5x+4=t\Rightarrow x^2+5x+6=t+2\) ta được:
\(t\left(t+2\right)-24=0\Rightarrow t^2+2t-24=0\)
\(\Rightarrow t^2-4t+6t-24=0\Rightarrow\left(t-4\right)\left(t-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}t-4=0\\t-6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}t=4\\t=6\end{matrix}\right.\)
Vì \(t=x^2+5x+4\) nên
\(\left[{}\begin{matrix}x^2+5x+4=4\\x^2+5x+6=6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\left(x+5\right)=0\\x\left(x+5\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy................
Chúc bạn học tốt!!!
Giải phương trình
a)(x2 + 3x + 2)(x2 + 7x + 12) = 24
b)\(\frac{x^2}{\left(x+2\right)^2}=3x^2-6x-3\)
a/ \(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+10\right)=0\)
b/ ĐKXĐ; ...
\(\Leftrightarrow\frac{x^2}{x^2+4x+4}+12x+5=3x^2+6x+2\)
\(\Leftrightarrow\frac{x^2+\left(12x+5\right)\left(x^2+4x+4\right)}{x^2+4x+4}=3x^2+6x+2\)
\(\Leftrightarrow\frac{\left(4x+10\right)\left(3x^2+6x+2\right)}{x^2+4x+4}=3x^2+6x+2\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2+6x+2=0\\\frac{4x+10}{x^2+4x+4}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x^2+6x+2=0\\x^2=6\end{matrix}\right.\)
a) Ta có :
(x2 + 3x + 2)(x2 + 7x + 12) = 24
⇔ ( x + 1 ) ( x + 2 ) (x + 3 ) ( x + 4 ) = 24
⇔ ( x + 1 ) ( x + 4 ) ( x + 2 ) ( x + 3 ) - 24 = 0
⇔ ( x2 + 5x + 4 ) ( x2 + 5x + 6 ) - 24 = 0
Đặt t = x2 + 5x + 4, ta có :
t ( t + 2 ) - 24 = 0
⇔ t2 + 2t +1 - 25 = 0
⇔ ( t + 1 )2 - 52 = 0
⇔ ( t - 4 ) ( t + 6 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}t-4=0\\t+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=4\\x^2+5x+4=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+5x=0\\x^2+5x+10=0\end{matrix}\right.\)
Sau đó tìm x bạn tự làm nha
Ý b) là - 3 à !?
\(a)(x^2 + 3x + 2)(x^2 + 7x + 12) = 24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)\left(x+3\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
Đặt: \(x^2+5x+5=y\) ta được: \(\left(y-1\right)\left(y+1\right)=24\)
\(\Leftrightarrow y^2=25\Leftrightarrow\left[{}\begin{matrix}y=-5\\y=5\end{matrix}\right.\)
Với: \(y=-5\Rightarrow x^2+5x+5=-5\Leftrightarrow x^2+5x+10=0\)
Có: \(\Delta=-15< 0\) vô nghiệm.
Với: \(y=5\Rightarrow x^2+5x+5=5\Leftrightarrow\left(x+5\right)x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Vậy pt có tập \(n_0S=\left\{0;-5\right\}\)
\(b,\frac{x^2}{\left(x+2\right)^2}=3x^2-6x-3\left(Đkxđ:x\ne-2\right)\)
\(\Leftrightarrow x^2=\left(x+2\right)^2\left(3x^2-6x-3\right)\)
\(\Leftrightarrow\left(x^2+4x+4\right)\left(3x^2-6x-3\right)-x^2=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)\left(3x^2+6x+1\right)+\left(x^2+4x+4\right)\left(-12x-5\right)-x^2=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)\left(3x^2+6x+2\right)-\left(12x^3+48x^2+48x+5x^2+20x+20+x^2\right)=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)\left(3x^2+6x+2\right)-2\left(2x+5\right)\left(3x^2+6x+2\right)=0\)
\(\Leftrightarrow\left(3x^2+6x+2\right)\left(x^2-6\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\sqrt{6}\\x=-1\pm\frac{1}{\sqrt{3}}\end{matrix}\right.\)
Vậy ..............
giải các phương trình sau
1/ 7x-5=13-5x
2/ 19+3x=5-18x
3/ x^2+2x-4=-12+3x+x^2
4/ -(x+5)=3(x-5)
5/ 3(x+4)=(-x+4)
1/ \(7x-5=13-5x\)
\(\Leftrightarrow12x=18\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy: \(S=\left\{\dfrac{3}{2}\right\}\)
==========
2/ \(19+3x=5-18x\)
\(\Leftrightarrow21x=-14\)
\(\Leftrightarrow x=-\dfrac{2}{3}\)
Vậy: \(S=\left\{-\dfrac{2}{3}\right\}\)
==========
3/ \(x^2+2x-4=-12+3x+x^2\)
\(\Leftrightarrow-x=-8\)
\(\Leftrightarrow x=8\)
Vậy: \(S=\left\{8\right\}\)
===========
4/ \(-\left(x+5\right)=3\left(x-5\right)\)
\(\Leftrightarrow-x-5=3x-15\)
\(\Leftrightarrow-4x=-10\)
\(\Leftrightarrow x=\dfrac{5}{2}\)
Vậy: \(S=\left\{\dfrac{5}{2}\right\}\)
==========
5/ \(3\left(x+4\right)=\left(-x+4\right)\)
\(\Leftrightarrow3x+12=-x+4\)
\(\Leftrightarrow4x=-8\)
\(\Leftrightarrow x=-2\)
Vậy: \(S=\left\{-2\right\}\)
[----------]
1. \(7x-5=13-5x\) \(\Leftrightarrow12x=18\Leftrightarrow x=\dfrac{3}{2}\)
2. \(19+3x=5-18x\Leftrightarrow21x=-14\Leftrightarrow x=-\dfrac{2}{3}\)
3. \(x^2+2x-4=-12+3x+x^2\Leftrightarrow-x=-8\Leftrightarrow x=8\)
4. \(-\left(x+5\right)=3\left(x-5\right)\Leftrightarrow-x-5=3x-15\Leftrightarrow4x=10\Leftrightarrow x=\dfrac{5}{2}\)
5. \(3\left(x+4\right)=-x+4\Leftrightarrow3x+12=-x+4\Leftrightarrow4x=-8\Leftrightarrow x=-2\)
1) Ta có: \(7x-5=13-5x\)
\(\Leftrightarrow12x=18\)
hay \(x=\dfrac{3}{2}\)
2) Ta có: \(19+3x=5-18x\)
\(\Leftrightarrow21x=-14\)
hay \(x=-\dfrac{2}{3}\)
3) Ta có: \(x^2+2x-4=x^2+3x-12\)
\(\Leftrightarrow3x-12=2x-4\)
hay x=8
4) Ta có: \(-\left(x+5\right)=3\left(x-5\right)\)
\(\Leftrightarrow-x-5-3x+15=0\)
\(\Leftrightarrow-4x=-10\)
hay \(x=\dfrac{5}{2}\)
Giải phương trình:
4. (2x+7)(x+3)2(2x+5)=18
5. (x2-3x+2)(2x-3)(2x-5)=30
6. (x2+3x+2)(x2+7x+12)=24
4.
\((2x+7)(x+3)^2(2x+5)=18\)
\(\Leftrightarrow [(2x+7)(2x+5)](x+3)^2=18\)
\(\Leftrightarrow (4x^2+24x+35)(x^2+6x+9)=18\)
\(\Leftrightarrow [4(x^2+6x+9)-1](x^2+6x+9)=18\)
\(\Leftrightarrow (4a-1)a=18\) (đặt \(x^2+6x+9=a\) )
\(\Leftrightarrow 4a^2-a-18=0\)
\(\Leftrightarrow (4a-9)(a+2)=0\Rightarrow \left[\begin{matrix} a=\frac{9}{4}\\ a=-2\end{matrix}\right.\)
Nếu \(a=x^2+6x+9=\frac{9}{4}\Leftrightarrow (x+3)^2=\frac{9}{4}\)
\(\Rightarrow \left[\begin{matrix} x+3=\frac{3}{2}\\ x+3=\frac{-3}{2}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{-9}{2}\end{matrix}\right.\)
Nếu \(a=x^2+6x+9=-2\Leftrightarrow (x+3)^2=-2< 0\) (vô lý)
Vậy ............
5.
PT \(\Leftrightarrow (x-1)(x-2)(2x-3)(2x-5)=30\)
\(\Leftrightarrow [(x-1)(2x-5)][(x-2)(2x-3)]=30\)
\(\Leftrightarrow (2x^2-7x+5)(2x^2-7x+6)=30\)
Đặt \(2x^2-7x+5=a\) thì:
PT \(\Leftrightarrow a(a+1)=30\)
\(\Leftrightarrow a^2+a-30=0\)
\(\Leftrightarrow (a-5)(a+6)=0\Rightarrow \left[\begin{matrix} a-5=0\\ a+6=0\end{matrix}\right.\)
Nếu \(a-5=0\Leftrightarrow 2x^2-7x=0\Leftrightarrow x(2x-7)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{7}{2}\end{matrix}\right.\)
Nếu \(a+6=0\Leftrightarrow 2x^2-7x+11=0\)
\(\Leftrightarrow 2(x-\frac{7}{4})^2+\frac{39}{8}=0\Leftrightarrow 2(x-\frac{7}{4})^2=-\frac{39}{8}<0\) (vô lý)
Vậy...........
6.
PT\(\Leftrightarrow (x+1)(x+2)(x+3)(x+4)=24\)
\(\Leftrightarrow [(x+1)(x+4)][(x+2)(x+3)]=24\)
\(\Leftrightarrow (x^2+5x+4)(x^2+5x+6)=24\)
\(\Leftrightarrow (a+4)(a+6)=24\) (đặt \(x^2+5x=a\) )
\(\Leftrightarrow a^2+10a=0\Leftrightarrow a(a+10)=0\Rightarrow \left[\begin{matrix} a=0\\ a+10=0\end{matrix}\right.\)
Nếu \(a=0\Leftrightarrow x^2+5x=0\Leftrightarrow x(x+5)=0\Leftrightarrow \left[\begin{matrix} x=0\\ x=-5\end{matrix}\right.\)
Nếu \(a+10=0\Leftrightarrow x^2+5x+10=0\Leftrightarrow (x+\frac{5}{2})^2+\frac{15}{4}=0\)
\(\Leftrightarrow (x+\frac{5}{2})^2=-\frac{15}{4}\) (vô lý)
Vậy...........
I. Giải các phương trình sau
a)x-(x/2-3+x/4)/2 = 2x - (10x-7x/3)/2 - x -1
b) 3/10×(1,2- x)-5+7x/4=1/20×(9x+0,2) - 12,5x+4,5/5
II. Giải các phương trình sau
a) 25x - 655/95-5×(x-12)/209= 89-3x-2(x-18)/5
b)8×(x+22)/45{7x+149+[6×(x+12)/5]}/9 = [x+35+2×(x+50)/9]/5
c) [x+2(3-x)/5]/14- [5x - 4(x-1)]/24 = (7x+2+9-3x/5)/12 + 2/3
III. Giải phương trình sau:
(59-x/41) + (57-x/43) + (55-x/45) + (53-x/47) + (51-x/49)=-5
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ. AI NHANH MÌNH TICK NHA