Tìm x, biết:
\(\left|2x-1\right|+\left|1-2x\right|=8\)
1,tìm x biết:\(\left|2x+3\right|+\left|2x-1\right|=\dfrac{8}{3.\left(x+1\right)^2+2}\)
\(VT=\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)
\(VP=\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{2}=4\)
\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\left(1\right)\\\left(x+1\right)^2=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(x=-1\) ( thỏa mãn\(\left(1\right)\) )
...
Tìm x
a, \(\dfrac{\left(x+2\right)^2}{2}\) + \(\dfrac{\left(1+2x\right)^2}{4}\) + \(\dfrac{\left(1-2x\right)^2}{8}\) – (1 + x)2 = 0
b, \(\dfrac{\left(x+1\right)^2}{2}\) - \(\dfrac{\left(1-2x\right)^2}{3}\) + \(\dfrac{\left(1+2x\right)^2}{4}\) - \(\dfrac{\left(5-x\right)^2}{6}\)= 0
c, (3 + x)3 – 3x2(x + 4) + (x + 2)3 = (1 – x)3 – 8
a: ta có: \(\dfrac{\left(x+2\right)^2}{2}+\dfrac{\left(2x+1\right)^2}{4}+\dfrac{\left(2x-1\right)^2}{8}-\left(x+1\right)^2=0\)
\(\Leftrightarrow4\left(x^2+4x+4\right)+2\left(4x^2+4x+1\right)+4x^2-4x+1-8\left(x+1\right)^2=0\)
\(\Leftrightarrow4x^2+16x+16+8x^2+8x+2+4x^2-4x+1-8\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow16x^2+20x+19-8x^2-16x-8=0\)
\(\Leftrightarrow8x^2+4x+11=0\)
\(\text{Δ}=4^2-4\cdot8\cdot11=-336< 0\)
Vì Δ<0 nên phương trình vô nghiệm
b.
PT \(\Leftrightarrow \frac{x^2+2x+1}{2}-\frac{4x^2-4x+1}{3}+\frac{4x^2+4x+1}{4}-\frac{x^2-10x+25}{6}=0\)
\(\Leftrightarrow \left(\frac{x^2+2x+1}{2}+\frac{4x^2+4x+1}{4}\right)-\left(\frac{4x^2-4x+1}{3}+\frac{x^2-10x+25}{6}\right)=0\)
\(\Leftrightarrow \frac{6x^2+8x+3}{4}-\frac{9x^2-18x+27}{6}=0\)
\(\Leftrightarrow \frac{3(6x^2+8x+3)-2(9x^2-18x+27)}{12}=0\)
$\Leftrightarrow 5x-\frac{15}{4}=0$
$\Leftrightarrow x=\frac{3}{4}$
c.
PT $\Leftrightarrow (x^3+9x^2+27x+27)-(3x^3+12x^2)+(x^3+6x^2+12x+8)=(-x^3+3x^2-3x+1)-8$
$\Leftrightarrow 42x+42=0$
$\Leftrightarrow x=-1$
Tìm x biết
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
x=1 và 0
ms thỏa mản đề ra
=)))))))))))))))
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6\left[1-\left(2x-1\right)^2\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\1-\left(2x-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=1\\2x-1=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x-1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}}\)
Tìm x, biết:
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
\(49\left(x^2+2x+1\right)+\left(4x^2-4x+1\right)-8\left(x^2-1\right)=11\)
\(4x^2+8x+4+4x^2-4x+1-8x^2+8-11=0\)
\(4x+2=0\)
\(4x=2\)
\(x=-\frac{1}{2}\)
<=>4(x2+2x+1)+4x2-4x+1-8x2+8-11=0
<=>4x2+8x+4+4x2-4x+1-8x2+8-11=0
<=>4x+2=0
<=>2(2x+1)=0
<=>2x+1=0
<=>x=-1/2
XL mik nhầm
\(=\frac{1}{2}\)
~~~~~~~~~~
..........
////////////////
Tìm x và y biết:
d)\(-1\frac{2}{3}-\left(\left|2x\right|+\frac{5}{6}\right)=\)\(-2\)e)\(\left(-\frac{1}{2}+\frac{1}{3}\right):\left|1-2x\right|-1\frac{1}{4}:\left(-\frac{5}{8}\right).\left(-\frac{1}{2}\right)^2=\frac{1}{3}\)
c)\(\left|2x-1\right|+\left|2y+1\right|+\left|2x-y\right|=0\)b)\(\left|2x-1\right|=2x-1\)
a)\(\left|x-3\right|=x+4\)
Tìm x: \(\left(2x-1\right)^8=\left(2x-1\right)^{10}\)
(2x - 1)⁸ = (2x - 1)¹⁰
(2x - 1)¹⁰ - (2x - 1)⁸ = 0
(2x - 1)⁸.[(2x - 1)² - 1] = 0
(2x - 1)⁸ = 0 hoặc (2x - 1)² - 1 = 0
*) (2x - 1)⁸ = 0
2x - 1 = 0
2x = 1
x = 1/2
*) (2x - 1)² - 1 = 0
(2x - 1)² = 1
2x - 1 = 1 hoặc 2x - 1 = -1
**) 2x - 1 = 1
2x = 2
x = 1
**) 2x - 1 = -1
2x = 0
x = 0
Vậy x = 0; x = 1/2; x = 1
(2x - 1)8 = (2x - 1)10
=) (2x - 1)10 : (2x - 1)8 = 1
(2x - 1)2 = 1 =) = 12
=) 2x - 1 = 1
2x = 2
x = 1.
các bước giải:
TH
TH
hoặc
hoặc
hoặc
Vậy
\(\left|2x+3\right|+\left|2x-1\right|=\dfrac{8}{3.\left(x+1\right)^2+2}\)\(\sqrt{ }\)\(\left|2x+3\right|+\left|2x-1\right|\)=\(\dfrac{8}{3.\left(x+1\right)^2+2}\)
P=\(\left(\dfrac{3\left(x+2\right)}{2x^2+8}-\dfrac{2x^2-x-10}{\left(x+1\right)\left[\left(x+1\right)^2-2x\right]}\right):\left(\dfrac{5}{x^2+1}+\dfrac{3}{2\left(x+1\right)}-\dfrac{3}{x-1}\right)\cdot\dfrac{2}{x-1}\)
a) rút gọn P
b)tìm tất cả các giá trị nguyên của x để P có giá trị là bội của 4
a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)
\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)
\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)
so sánh: \(A=26^2-24^2\) và \(B=27^2-25^2\)
tìm x, biết:
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
Bài 1:
\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2\cdot50=100\)
\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2\cdot52=104\)
=>A<B
Bài 2:
\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)
=>\(4\left(x^2+2x+1\right)+4x^2-4x+1-8\left(x^2-1\right)=11\)
=>\(4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)
=>4x+13=11
=>4x=-2
=>\(x=-\dfrac{1}{2}\)
Tìm số hữu tỉ x biết
\(\left(2x-1\right)^6=\left(2x-1\right)^8\)
giống cái kia thôi bn
Mik làm rồi mà
Mà cái bn Nguyễn Duy Đạt gì đó làm thiếu 1 trường hợp
Mà bn vẫn kik hở
Sao zzzzz??????
\(\left(2x-1\right)^6=\left(2x-1\right)^8\Leftrightarrow\left(2x-1\right)^6-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left[\left(2x-1\right)-\left(2x-1\right)\right]...=0\Leftrightarrow x=0\)
''...'' vế sau á :), ko chắc