Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thua bun
Xem chi tiết
Lê Thị Thục Hiền
4 tháng 7 2021 lúc 11:02

Áp dụng hệ thức trong tam giác vuông có:

\(AH^2=HB.HC\Leftrightarrow225=HB.HC\)

\(AB^2=BH.BC\)

\(AC^2=CH.BC\)

\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{BH}{CH}=\dfrac{25}{49}\)

\(\Rightarrow BH=\dfrac{25CH}{49}\)

Có \(HB.HC=225\)

\(\Leftrightarrow\dfrac{25HC^2}{49}=225\)\(\Leftrightarrow HC=21\) (cm)

\(\Rightarrow HB=\dfrac{25.21}{49}=\dfrac{75}{7}\) (cm)

Vậy....

Nguyễn Lê Phước Thịnh
4 tháng 7 2021 lúc 11:06

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{7}\)

nên \(\dfrac{AB}{5}=\dfrac{AC}{7}\)

Đặt \(\dfrac{AB}{5}=\dfrac{AC}{7}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=5k\\AC=7k\end{matrix}\right.\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{15^2}=\dfrac{1}{\left(5k\right)^2}+\dfrac{1}{\left(7k^2\right)}\)

\(\Leftrightarrow k=\dfrac{3\sqrt{74}}{7}\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=5k=\dfrac{5\cdot3\sqrt{74}}{7}=\dfrac{15\sqrt{74}}{7}\\AC=7k=\dfrac{7\cdot3\sqrt{74}}{7}=3\sqrt{74}\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=\left(\dfrac{15\sqrt{74}}{7}\right)^2-15^2=\dfrac{5625}{49}\)

hay \(HB=\dfrac{75}{7}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow HC^2=\left(3\sqrt{74}\right)^2-15^2=441\)

hay HC=21(cm)

missing you =
4 tháng 7 2021 lúc 11:09

\(\dfrac{AB}{AC}=\dfrac{5}{7}=>AB=\dfrac{5AC}{7}\)

áp dụng hệ thức lượng \(=>\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=>\dfrac{1}{15^2}=\dfrac{1}{\left(\dfrac{5AC}{7}\right)^2}+\dfrac{1}{AC^2}=>AC=3\sqrt{74}\)

\(=>AB=\dfrac{15\sqrt{74}}{7}cm\)

hệ thức lượng \(=>AH.BC=AB.AC=>BC=\dfrac{AB.AC}{AH}=\dfrac{\left(3\sqrt{74}\right)\left(\dfrac{15\sqrt{74}}{7}\right)}{15}=\dfrac{222}{7}cm\)

áp dụng hệ thức lượng

\(=>AB^2=BH.BC=>BH=\dfrac{AB^2}{BC}=\dfrac{\left(\dfrac{15\sqrt{74}}{7}\right)^2}{\dfrac{222}{7}}=\dfrac{75}{7}cm\)

\(=>HC=\dfrac{222}{7}-\dfrac{75}{7}=21cm\)

Tuấn Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 7 2023 lúc 10:59

AB/AC=5/7

=>HB/HC=(5/7)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

AH^2=HB*HC

=>25k*49k=15^2

=>k^2=9/49

=>k=3/7

=>HB=25*3/7=75/7cm; HC=49*3/7=21cm

Anbert_An
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 7 2023 lúc 19:39

1: AB/AC=5/7

=>HB/HC=(AB/AC)^2=25/49

=>HB/25=HC/49=k

=>HB=25k; HC=49k

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>1225k^2=15^2=225

=>k^2=9/49

=>k=3/7

=>HB=75/7cm; HC=21(cm)

 

Phạm Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 14:09

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 14:11

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Trần Hoàng Anh
Xem chi tiết
Nguyễn Đức Trí
12 tháng 7 2023 lúc 8:35

Hệ thức lượng trong tam giác vuông :

\(AB^2=BC.BH\left(1\right)\)

\(AC^2=BC.CH\left(2\right)\)

\(\left(1\right):\left(2\right)\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{25}{36}\left(\dfrac{AB}{AC}=\dfrac{5}{6}\right)\)

\(\Rightarrow BH=\dfrac{25}{36}CH\)

mà \(AH^2=BH.CH\)

\(\Rightarrow\dfrac{25}{36}CH^2=AH^2=30^2\)

\(\Rightarrow\dfrac{5}{6}CH=30\Rightarrow CH=\dfrac{30.6}{5}=36\) (\(\left(cm\right)\)

\(\Rightarrow BH=\dfrac{25}{36}.36=25\) \(\left(cm\right)\)

Nguyễn Ngọc Anh Minh
12 tháng 7 2023 lúc 8:40

A B C H

Xét tg vuông ABH và tg vuông ACH có

\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABH đồng dạng với tg ACH

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{HB}{AH}=\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Rightarrow\dfrac{30}{HC}=\dfrac{5}{6}\Rightarrow HC=\dfrac{6.30}{5}=36cm\)

\(\Rightarrow\dfrac{HB}{30}=\dfrac{5}{6}\Rightarrow HB=\dfrac{5.30}{6}=25cm\)

Nguyễn Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:31

Bài 2: 

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:30

Bài 1: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

Phạm Duy
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 9 2021 lúc 14:10

\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)

Áp dụng HTL tam giác

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)

Áp dụng HTL tam giác: 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:23

Bài 1:

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

Nguyễn Lê Phước Thịnh
19 tháng 9 2021 lúc 14:24

Bài 2: 

Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng vói cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Thân Thùy Dương
Xem chi tiết

Xét tam giác AHB đồng dạng với tam giác CHA góc-góc ( góc AHB=góc CHA; góc BAH = góc C do cùng phụ với góc B)
=> k= AH/HC=AB/AC=HB/AH
AB/AC=5/7
=>AB/AC=HB/AH hay 5/7=HB/15 -> HB = 75/7
AH/HC=AB/AC hay 15/HC=5/7 -> HC =21

Mai Đới
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 18:39

Ta có : \(\frac{AB}{AC}=\frac{5}{7}\Rightarrow AB=\frac{5}{7}AC\)

Xét tam giác ABC vuông tại A, đường cao AH

 * Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{225}=\frac{1}{\left(\frac{5}{7}AC\right)^2}+\frac{1}{AC^2}\Rightarrow AC=3\sqrt{74}\)cm 

\(\Rightarrow AB=\frac{5}{7}.3\sqrt{74}=\frac{15\sqrt{74}}{7}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\)

\(\Rightarrow BC=\frac{AB.AC}{AH}=\frac{3\sqrt{74}.\frac{15\sqrt{74}}{7}}{15}=\frac{222}{7}\)cm 

Áp dụng định lí Pytago tam giác ABH vuông tại H 

\(AB^2=BH^2+AH^2\Rightarrow BH=\sqrt{AB^2-AH^2}=\frac{75}{7}\)cm 

\(\Rightarrow HC=BC-BH=\frac{222}{7}-\frac{75}{7}=\frac{147}{7}=21\)cm 

Khách vãng lai đã xóa