Bài 1: tìm GTLN hoặc GTNN của
a, N=-1-x-x2
b,B=3x2+4x-13
Bài 11. Tìm GTNN của
a/ A= x^2 – 4x + 2
b/ B= 4x^2 + 4x – 1
c/ C= x^2 + x
Bài 12. Tìm GTLN của
a) A= 2- 6x – 9x^2
b) B= (5-x)(3+x)
c/ = - 2x^2 + 4x
MN GIÚP MIK NHANH VS Ạ
Tìm GTLN hoặc GTNN của
A = 3x(3 - x2)
B = 2x(x - 4) - 10
\(B=2x\left(x-4\right)-10=2x^2-8x-10\)
\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
\(minB=-18\Leftrightarrow x=2\)
Tìm GTLN hoặc GTNN của
A=x2+1
B=3x4-5
\(A\ge1\forall x\)
Dấu '=' xảy ra khi x=0
\(B\ge-5\forall x\)
Dấu '=' xảy ra khi x=0
\(A=x^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy \(A_{min}=1\Leftrightarrow x=0\)
\(B=3x^4-5\ge-5\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy \(B_{min}=-5\Leftrightarrow x=0\)
Bài 7. Tìm GTNN (hoặc GTLN) của biểu thức
1. A = x² – 2x +1
5. D = -x² - 6x – 10
2. B = x² + 4x – 5
6. E = -x² + 5x +3
3. C = x²+x
7. F = -x² +100x – 2022
4. A= 4x² +4x -1|
1: A=(x-1)^2>=0
Dấu = xảy ra khi x=1
5: B=-(x^2+6x+10)
=-(x^2+6x+9+1)
=-(x+3)^2-1<=-1
Dấu = xảy ra khi x=-3
2: B=x^2+4x+4-9
=(x+2)^2-9>=-9
Dấu = xảy ra khi x=-2
6: =-(x^2-5x-3)
=-(x^2-5x+25/4-37/4)
=-(x-5/2)^2+37/4<=37/4
Dấu = xảy ra khi x=5/2
3: =x^2+x+1/4-1/4
=(x+1/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=-1/2
7: =4x^2+4x+1-2
=(2x+1)^2-2>=-2
Dấu = xảy ra khi x=-1/2
Bài 7. Tìm GTNN (hoặc GTLN) của biểu thức
1. A = x² – 2x +1
5. D = -x² - 6x – 10
2. B = x² + 4x – 5
6. E = -x² + 5x +3
3. C = x²+x
7. F = -x² +100x – 2022
4. A= 4x² +4x -1|
1: A=(x-1)^2>=0
Dấu = xảy ra khi x=1
5: B=-(x^2+6x+10)
=-(x^2+6x+9+1)
=-(x+3)^2-1<=-1
Dấu = xảy ra khi x=-3
2: B=x^2+4x+4-9
=(x+2)^2-9>=-9
Dấu = xảy ra khi x=-2
6: =-(x^2-5x-3)
=-(x^2-5x+25/4-37/4)
=-(x-5/2)^2+37/4<=37/4
Dấu = xảy ra khi x=5/2
3: =x^2+x+1/4-1/4
=(x+1/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=-1/2
7: =4x^2+4x+1-2
=(2x+1)^2-2>=-2
Dấu = xảy ra khi x=-1/2
tìm GTNN hoặc GTLN của A = 3x2+2x-3
B = (x2+x+20): x2 +x +5
A=3(x^2+2/3x-1)
=3(x^2+2*x*1/3+1/9-10/9)
=3(x+1/3)^2-10/3>=-10/3
Dấu = xảy ra khi x=-1/3
\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)
Dấu = xảy ra khi x=-1/2
Tìm GTLN hoặc GTNN của các bt sau
\(a.|x-\dfrac{3}{4}|+1\)
\(b.7-|4x-3|\)
a: \(A\ge1\forall x\)
Dấu '=' xảy ra khi x=3/4
Bài 1: Tìm GTLN hoặc GTNN của biểu thức
a)A= -x2+2x+5
b)B= -x2-y2+4x+4y+2
c)C= x2+y2-2x+6y+12
\(a,-x^2+2x+5=-\left(x^2-2x-5\right)=-\left(x^2-2x+1-6\right)=-\left(x-1\right)^2+6\le6\)
dấu'=' xảy ra<=>x=1=>Max A=6
\(b,B=-x^2-y^2+4x+4y+2=-x^2+4x-4-y^2+4x-4+10\)
\(=-\left(x^2-4x+4\right)-\left(y^2-4x+4\right)+10\)
\(=-\left(x-2\right)^2-\left(y-2\right)^2+10=-\left[\left(x-2\right)^2+\left(y-2\right)^2\right]+10\le10\)
dấu"=" xảy ra<=>x=y=2=>Max B=10
\(c,C=x^2+y^2-2x+6y+12=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)
dấu'=' xảy ra<=>x=1,y=-3=>MinC=2
Bài 1:
a, Tìm GTNN của A = \(4x^2+4x+11\)
b, Tìm GTLN của B = \(5-8x-x^2\)
I zì:vv
a) Ta có: \(A=4x^2+4x+11=4x^2+4x+1=10=\left(2x+1\right)^2+10\ge10\forall x\)
Vậy MinA=10 khi \(x=-\dfrac{1}{2}\)
b) Ta có: \(B=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Vậy MaxB=21 khi x=-4