Cho \(\Delta\)ABC có \(\widehat{B}=\widehat{C}\)
C/M AB=AC
Cho \(\Delta ABC\) có \(\widehat{B}\) và \(\widehat{C}\). Vẽ tia phân giác \(\widehat{B}\) cắt AC tại D, vẽ tia phân giác \(\widehat{C}\) cắt AB tại E, BD cắt CE tại F. Chứng minh rằng:
a) BD = CE
b) \(\Delta BEF=\Delta CDF\)
c) AF là tia phân giác của \(\widehat{BAC}\)
Ta có : ΔABC có \(\widehat{C}=\widehat{B}\).Tia p/g BD,CE của \(\widehat{B}=\widehat{C}\) cắt nhau tại O
Từ O kẻ OH ⊥ AC,OK ⊥ AB
C/M : A) ΔBCD= ΔCBE
B)OB=OC
C)OH=OK
b) Nếu các bạn chưa học tam giác cân thì làm như sau: VìΔBCD = ΔCBE cmt ⇒CD = BE
= Xét ΔBOE,ΔCODcó: = BE = CD cmt = cmt ⇒ΔBOE = ΔCOD g − c − g ⇒OB= OC(hai cạnh tương ứng) ( ) ^ CDB ^ BEC ^ EDO ^ ODC ( ) ^ BEO ^ CDOHình bạn tự vẽ nha!
a) Vì \(\widehat{B}=\widehat{C}\left(gt\right)\)
Mà \(BD\) và \(CE\) là tia phân giác của \(\widehat{B}\) và \(\widehat{C}\) cắt nhau tại O.
=> \(\left\{{}\begin{matrix}\widehat{DBC}=\widehat{ECB}\\\widehat{DBE}=\widehat{ECD}\end{matrix}\right.\)
Xét 2 \(\Delta\) \(BCD\) và \(CBE\) có:
\(\widehat{BCD}=\widehat{CBE}\left(gt\right)\)
\(\widehat{DBC}=\widehat{ECB}\left(cmt\right)\)
Cạnh BC chung
=> \(\Delta BCD=\Delta CBE\left(g-c-g\right).\)
=> \(CD=BE\) (2 cạnh tương ứng)
b) Theo câu a) ta có \(\Delta BCD=\Delta CBE.\)
=> \(\widehat{ODC}=\widehat{OEB}\) (2 góc tương ứng)
Xét 2 \(\Delta\) \(OBE\) và \(OCD\) có:
\(\widehat{OEB}=\widehat{ODC}\left(cmt\right)\)
\(BE=CD\left(cmt\right)\)
\(\widehat{DBE}=\widehat{ECD}\left(cmt\right)\)
=> \(\Delta OBE=\Delta OCD\left(g-c-g\right).\)
=> \(OB=OC\) (2 cạnh tương ứng)
c) Xét 2 \(\Delta\) vuông \(OBK\) và \(OCH\) có:
\(\widehat{OKB}=\widehat{OHC}=90^0\left(gt\right)\)
\(OB=OC\left(cmt\right)\)
\(\widehat{DBE}=\widehat{ECD}\left(cmt\right)\)
=> \(\Delta OBK=\Delta OCH\) (cạnh huyền - góc nhọn)
=> \(OK=OH\) (2 cạnh tương ứng).
Chúc bạn học tốt!
Cho ΔABC có \(\widehat{A}\)= 2\(\widehat{B}\), AC = 4,5cm,
BC = 6cm. Trên tia đối của tia AC lấy điểm E
sao cho AE = AB
a, C/m: ΔABC ∼ ΔBEC
b, Tính AB
Cho tam giác ABC có \(\widehat{B}=\widehat{C}\). Tia phân giác của \(\widehat{B}\) cắt AC ở M và tia phân giác của \(\widehat{C}\) cắt AB ở N.
a) So sánh BM và CN;
b) Chứng minh: \(\Delta ABM=\Delta ACN\).
Bài này mình thấy chứng minh phần b trước thì ra phần a luôn =)))
b)Tam giác ABC có 2 góc bằng nhau: \(\widehat{ABC}=\widehat{ACB}\) =>Tam giác ABC cân tại A => AB=AC (1)
Tia BM là tia phân giác của góc ABC => \(\widehat{ABM}=\widehat{BM}C=\frac{1}{2}.\widehat{ABC}\)
Tia CN là tia phân giác của góc ACB => \(\widehat{ACN}=\widehat{NCB}=\frac{1}{2}.\widehat{ACB}\)
Mà \(\widehat{ABC}=\widehat{ACB}\) <=> \(\frac{1}{2}.\widehat{ABC}=\frac{1}{2}.\widehat{ACB}\) => \(\widehat{ABM}\)\(=\widehat{ACN}\) (2)
Xét \(\Delta ABM\) và \(\Delta ACN\) có:
\(\widehat{BAC}\) là góc chungAB=AC (suy ra ở (1))\(\widehat{ABM}\)\(=\widehat{ACN}\) (suy ra ở (2))=>\(\Delta ABM\)=\(\Delta ACN\) (g.c.g) (đpcm)a)Theo chứng minh phần b ta có:\(\Delta ABM\)=\(\Delta ACN\) => BM=CN (2 cạnh tương ứng)
\(\Delta ABC\)có AB = 24; AC = 32; BC = 40. Trên cạnh AC lấy M sao cho MA = 7.
CMR: a/ \(\Delta ABC\)vuông; b/ \(\widehat{AMB}=2\widehat{C}\)
CẦN GẤP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) Theo định lí Py-ta-go đảo ta có :
\(\Delta ABC\)có : AC2 + AB2 = BC2 ( 322 + 242 = 402 )
\(\Rightarrow\)\(\Delta ABC\)vuông tại A ( đpcm )
b)Áp dụng định lí Py-ta-go vào \(\Delta AMB\)có :
MB2 = AM2 + AB2
\(\Rightarrow\)MB2 = 72 + 242 = 625 = 252
\(\Rightarrow\)MB = 25
ta có : M nằm giữa A và C ( vì M thuộc AC ) nên AM + MC = AC
hay 7 + MC = 32
\(\Rightarrow\)MC = 32 - 7 = 25
vì MC = MB nên \(\Delta BMC\)cân tại M
xét \(\Delta BMC\)cân tại M có : \(\widehat{C}=\widehat{MBC}\)
Mà \(\widehat{AMB}\)là góc ngoài của \(\Delta BMC\)nên \(\widehat{AMB}\)= \(\widehat{C}+\widehat{MBC}\)hay \(\widehat{AMB}\)= \(2\widehat{C}\)( đpcm )
à, vì ta đã chứng minh tam giác ABC vuông tại A nên tam giác AMB vuông tại A
Cho \(\Delta ABC\) vuông tại B có \(\widehat{C}=60^0\),AC = 6 cm
a) Trên tia đối của tia CB lấy điểm N sao cho CN = AC. C/m \(\dfrac{CB}{CN}=\dfrac{AB}{AN}\)
b) Đường thẳng song song với đường phân giác của \(\widehat{ACN}\) kẻ từ B cắt AN tại H. C/m \(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{BN^2}\)
Cho \(\Delta ABC\) có \(\widehat{A}=90^o\) và AB < AC. Trên cạnh AC lấy điểm D sao cho AD= AB. Trên tia đối của tia AB lấy điểm E sao cho AE= AC.
a) Chứng minh \(\Delta ABC=\Delta ADE\) và DE= AC
b) Chứng minh DE \(\perp\)BC
c) Biết \(4\widehat{B}=5\widehat{C}\). Tính \(\widehat{AED}\)
Xét tam giác vuông ABC và tam giác vuông ADE có :
AB=AD
AC=AE
=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông )
Cho \(\Delta ABC\)có \(\widehat{A}=50^o\), AB = AC. Tính \(\widehat{B},\widehat{C}\)
Từ đề bài, tam giác ABC cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-50^0}{2}=65^0\)
Bài làm
Vì AB = AC ( giả thiết )
=> Tam giác ABC là tam giác cân tại A
=> B = C ( hai cạnh ở đáy )
Xét tam giác ABC cân tại A
Ta có: A + B + C = 180o ( định lí tổng ba góc của tam giác )
hay 50o+B+C=180o
=> B + C = 180o - 50o
=> B + C = 130o
Mà B = C
=> B = C = 130o/2=65o
Vậy B = C = 65o
# Chúc bạn học tốt #
=>
Cho \(\Delta ABC\) có \(\widehat{A}=77\) độ (AB < AC). Trên AC lấy điểm D sao cho thỏa mãn điều kiện \(\widehat{DBC}=\widehat{C}\); \(\widehat{ADB}=\widehat{ABD}\). Tính số đo của góc B và góc C của tam giác ABC.