Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Lan Anh
Xem chi tiết
Nguyễn Thị Lan Anh
Xem chi tiết
The Silent Man
23 tháng 4 2017 lúc 15:16

Đề có thiếu ko bạn??

Đàm Tùng Vận
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 3 2022 lúc 18:01

a: \(\Leftrightarrow x^2+4x+4+3x^2+6x+3>=4x^2-4\)

=>10x+7>=-4

=>10x>=-11

hay x>=-11/10

b: \(\Leftrightarrow6\left(x-1\right)-4\left(x-2\right)\le12x-3\left(x-3\right)\)

=>6x-6-4x+8<=12x-3x+9

=>2x+2<=9x+9

=>-7x<=7

hay x>=-1

Phương Thảo
5 tháng 3 2022 lúc 18:29

a: ⇔x2+4x+4+3x2+6x+3>=4x2−4⇔x2+4x+4+3x2+6x+3>=4x2−4

=>10x+7>=-4

=>10x>=-11

hay x>=-11/10

b: ⇔6(x−1)−4(x−2)≤12x−3(x−3)⇔6(x−1)−4(x−2)≤12x−3(x−3)

=>6x-6-4x+8<=12x-3x+9

=>2x+2<=9x+9

=>-7x<=7

hay x>=-1

slyn
Xem chi tiết
Bùi Việt Anh
21 tháng 3 2022 lúc 21:20

a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)

\(\Leftrightarrow\)a^2+2ab+b^2>=4ab

\(\Leftrightarrow\)a^2-2ab+b^2>=0

\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)

Bùi Việt Anh
21 tháng 3 2022 lúc 21:25

b,\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\) 

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng

Cresent Moon
Xem chi tiết
Hà Nam Phan Đình
30 tháng 11 2017 lúc 22:07

Đề phải cho a,b,c lớn hơn 0 mới đúng

BĐT cần chứng minh tương đương

\(\left(a+b+c\right)\left(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{a^2+c^2}{a+c}\right)\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\Sigma\dfrac{c\left(a^2+b^2\right)+\left(a+b\right)\left(a^2+b^2\right)}{a+b}\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)+\Sigma\dfrac{c\left(a^2+b^2\right)}{a+b}\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\Sigma\dfrac{c\left(\left(a+b\right)^2-2ab\right)}{a+b}\le a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ac+bc+ac\right)\le a^2+b^2+c^2+2abc\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\)

áp dụng Bđt \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)\

\(\Rightarrow a^2+b^2+c^2+2abc\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge a^2+b^2+c^2+\dfrac{9abc}{a+b+c}\)

Ta cần cm

\(a^2+b^2+c^2+\dfrac{9abc}{a+b+c}\ge2\left(ab+bc+ac\right)\)

BĐT trên tương đương

\(a^3+b^3+c^3+3abc\ge a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)\)

BĐT trên là hệ quả của BĐT Schur nên ta có đpcm

Phạm Phương Anh
Xem chi tiết
Nguyễn Đặng Hoàng Anh
Xem chi tiết
Lấp La Lấp Lánh
4 tháng 9 2021 lúc 22:20

a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)

b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)

\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)

\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)

 

Nguyễn Lê Phước Thịnh
4 tháng 9 2021 lúc 22:13

a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)

\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Trên con đường thành côn...
4 tháng 9 2021 lúc 22:16

undefinedundefined

Nguyễn Thị Hằng
Xem chi tiết
Nhã Doanh
2 tháng 4 2018 lúc 10:48

Sửa đề:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)

Xét hiệu:

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)-\left(ax+by+cz\right)^2\)

\(=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz\)

\(=a^2y^2+a^2z^2+b^2z^2+b^2x^2+c^2y^2+c^2x^2-2axby-2bycz-2axcz\)

\(=\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2axcz+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)\)

\(=\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2\ge0\)

=> BĐT luôn đúng

Hồ Thị Hồng Nghi
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 8:10

Áp dụng BĐT cosi:

\(\left(a+b+b+c+c+a\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\\ \ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\cdot3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=9\\ \Leftrightarrow2\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge9\\ \Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{9}{2}\left(đpcm\right)\)

Dấu \("="\Leftrightarrow a=b=c\)