Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoai Bao Tran
Xem chi tiết
Hà Nam Phan Đình
10 tháng 11 2017 lúc 18:54

Ta có :

\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(2x+y+z\right)+\left(2y+x+z\right)}\)(1)

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\left(1\right)\le\dfrac{1}{4}\left(\dfrac{1}{x+y+x+z}+\dfrac{1}{y+x+y+z}\right)\le\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\right)\)

\(=\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

tương tự với hai ông còn lại sau đó cộng lại ta được:

\(\Sigma\dfrac{1}{3x+3y+2z}\le\dfrac{24}{16}=\dfrac{3}{2}\)

Phạm Thùy Linh ( team ❤️...
Xem chi tiết
Phạm Nguyễn Gia Phú
4 tháng 10 lúc 20:19

1,7y

Đạt Đỗ
Xem chi tiết
missing you =
17 tháng 7 2021 lúc 15:19

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

Vo Thi Minh Dao
Xem chi tiết
 Mashiro Shiina
5 tháng 12 2018 lúc 13:05

Sửa đề nhé\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(z+x\right)+\left(z+y\right)+\left(x+y\right)+\left(x+y\right)}\)

\(\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}\right)\)

CMTT và cộng theo vế:

\(VT\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)

\(=\dfrac{1}{16}.24=\dfrac{3}{2}\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)

kenin you
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 20:29

Bài 1: 

Ta có: \(3x=2y\)

nên \(\dfrac{x}{2}=\dfrac{y}{3}\)

mà x+y=-15

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{-15}{5}=-3\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{2}=-3\\\dfrac{y}{3}=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-9\end{matrix}\right.\)

Vậy: (x,y)=(-6;-9)

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 20:30

Bài 2: 

a) Ta có: \(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}\)

mà x+y-z=20

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{4+3-5}=\dfrac{20}{2}=10\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{4}=10\\\dfrac{y}{3}=10\\\dfrac{z}{5}=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=30\\z=50\end{matrix}\right.\)

Vậy: (x,y,z)=(40;30;50)

Nguyễn Lê Phước Thịnh
1 tháng 5 2021 lúc 20:32

Bài 2: 

b) Ta có: \(\dfrac{y}{3}=\dfrac{z}{7}\)

nên \(\dfrac{y}{12}=\dfrac{z}{28}\)

mà \(\dfrac{x}{11}=\dfrac{y}{12}\)

nên \(\dfrac{x}{11}=\dfrac{y}{12}=\dfrac{z}{28}\)

hay \(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}\)

mà 2x-y+z=152

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{22}=\dfrac{y}{12}=\dfrac{z}{28}=\dfrac{2x-y+z}{22-12+28}=\dfrac{152}{38}=4\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{x}{11}=4\\\dfrac{y}{12}=4\\\dfrac{z}{28}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=44\\y=48\\z=112\end{matrix}\right.\)

Vậy: (x,y,z)=(44;48;112)

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
16 tháng 1 2021 lúc 21:22

Áp dụng BĐT BSC:

\(F=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

\(=\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)

\(maxF=1\Leftrightarrow x=y=z=\dfrac{3}{4}\)

Lê Hoàng Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 23:28

a) Để y nguyên thì \(6x-4⋮2x+3\)

\(\Leftrightarrow-13⋮2x+3\)

\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)

\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)

hay \(x\in\left\{-1;-2;5;-8\right\}\)

Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Minh An
Xem chi tiết