Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chieri Sono
Xem chi tiết
Pham Van Hung
26 tháng 10 2018 lúc 14:56

      

       \(x^3-27x-54\)

\(=x^3-6x^2+6x^2-36x+9x-54\)

\(=x^2\left(x-6\right)+6x\left(x-6\right)+9\left(x-6\right)\)

\(=\left(x-6\right)\left(x^2+6x+9\right)=\left(x-6\right)\left(x+3\right)^2\)

       \(4x^3-13x^2+9x-18\)

\(=4x^3-12x^2-x^2+3x+6x-18\)

\(=4x^2\left(x-3\right)-x\left(x-3\right)+6\left(x-3\right)\)

\(=\left(x-3\right)\left(4x^2-x+6\right)\)

hoa tran
Xem chi tiết
Lê anh
26 tháng 12 2021 lúc 16:30

Bạn thay x vào biểu thức rồi tính thôi

►ᵛᶰシ๖ۣۜUⓈᗩ▼
26 tháng 12 2021 lúc 17:07

a)(x-10)2-x(x+80)

(x2-2x10+100)-x2-80x

=x2-20x+100-x2-80x=-100x+100 
khi x = 0.98 
ta có 
(-100*0.98)+100=-98+100=2
b)x3-9x+27x-27
 hình như là -27x :))

 

Nguyễn Minh Hằng
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 17:25

\(a,\Leftrightarrow x^3-8-x^3-2x=12\Leftrightarrow-2x=20\Leftrightarrow x=-10\\ b,\Leftrightarrow x^2-6x+9-x^2+4=16\Leftrightarrow=-6x=3\Leftrightarrow x=-\dfrac{1}{2}\\ c,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-6\right)+9\left(x-6\right)=0\\ \Leftrightarrow\left(x^2+9\right)\left(x-6\right)=0\\ \Leftrightarrow x=6\left(x^2+9>0\right)\)

Diệp Ẩn
Xem chi tiết
vũ mai liên
15 tháng 10 2018 lúc 20:45

mày viết lại cái đề bài hộ tao cái

Nguyễn Lê Phước Thịnh
3 tháng 10 2022 lúc 14:24

a: \(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+9x\left(x+3\right)=0\)

=>(x+3)(x^2+6x+9)=0

=>x=-3

b: \(\Leftrightarrow x^2-2x-x^3+6x^2-4=0\)

=>-x^3+6x^2-2x-4=0

hay \(x\in\left\{5.5;1.14;-0.64\right\}\)

c: =>(3x-1)^3=8

=>3x-1=2

=>3x=3

=>x=1

Lizy
Xem chi tiết
Toru
26 tháng 8 2023 lúc 9:38

\(1-27x^3\)

\(=1-\left(3x\right)^3\)

\(=\left(1-3x\right)\left(1+3x+9x^2\right)\)

\(---\)

\(x-3^3+27\)

\(=x-27+27=x\) 

\(---\)

\(27x^3+27x^2+9x+1\)

\(=\left(3x\right)^3+3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2+1^3\)

\(=\left(3x+1\right)^3\)

\(---\)

\(\dfrac{x^6}{27}-\dfrac{x^4y}{3}+x^2y^2-y^3\) (sửa đề)

\(=\left(\dfrac{x^2}{3}\right)^3-3\cdot\left(\dfrac{x^2}{3}\right)^2\cdot y+3\cdot\dfrac{x^2}{3}\cdot y^2-y^3\)

 \(=\left(\dfrac{x^2}{3}-y\right)^3\)

#Ayumu

Tieen Ddat dax quay trow...
26 tháng 8 2023 lúc 9:39

1-27x\(^3\)

=(1-3x)(1+3x+9x\(^2\)

34 9/10 Chí Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 3 2022 lúc 20:44

a: \(\Leftrightarrow x^2\left(9x^2-4\right)=0\)

\(\Leftrightarrow x^2\left(3x-2\right)\left(3x+2\right)=0\)

hay \(x\in\left\{0;\dfrac{2}{3};-\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow2x^4-4x^2+3x^2-6=0\)

\(\Leftrightarrow x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

d: \(\Leftrightarrow x^4-9x^2+6x^2-54=0\)

\(\Leftrightarrow x^2-9=0\)

=>x=3 hoặc x=-3

camcon
Xem chi tiết

\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{6x-9}-\sqrt[3]{27x-54}}{\left(x-3\right)\left(x^2+3x-18\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\sqrt{6x-9}-x+x-\sqrt[3]{27x-54}}{\left(x-3\right)^2\left(x+6\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{6x-9-x^2}{\sqrt{6x-9}+x}+\dfrac{x^3-27x+54}{x^2+x\cdot\sqrt[3]{27x-54}+\sqrt[3]{\left(27x-54\right)^2}}}{\left(x-3\right)^2\left(x+6\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{-\left(x-3\right)^2}{\sqrt{6x-9}+x}+\dfrac{\left(x-3\right)^2\left(x+6\right)}{x^2+x\cdot\sqrt[3]{27x-54}+\sqrt[3]{\left(27x-54\right)^2}}}{\left(x-3\right)^2\left(x+6\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\dfrac{-1}{\sqrt{6x-9}+x}+\dfrac{\left(x+6\right)}{x^2+x\cdot\sqrt[3]{27x-54}+\sqrt[3]{\left(27x-54\right)^2}}}{\left(x+6\right)}\)

\(=\dfrac{-\dfrac{1}{\sqrt{6\cdot3-9}+3}+\dfrac{3+6}{3^2+3\cdot\sqrt[3]{27\cdot3-54}+\sqrt[3]{\left(27\cdot3-54\right)^2}}}{3+6}\)

\(=\dfrac{-\dfrac{1}{3+3}+\dfrac{9}{9+3\cdot3+3^2}}{9}=\dfrac{-\dfrac{1}{6}+\dfrac{1}{3}}{9}=\dfrac{\dfrac{1}{6}}{9}=\dfrac{1}{54}\)

 

Phương pháp đạo hàm ý em là định lý L'Hopital hả? Định lý L'Hopital là 1 phương pháp rất mạnh để giải các bài giới hạn dạng phân thức \(\dfrac{0}{0}\) hoặc \(\dfrac{\infty}{\infty}\), nhưng người ta hạn chế sử dụng khi xuất hiện căn thức (lý do là khi đạo hàm thì căn thức không những gọn đi mà còn "phình to" ra rất nhiều). Ưu điểm là nó khử dạng vô định rất nhanh chóng. Còn khi phân thức mà tử mẫu đều ko xuất hiện căn thức thì đó đúng là 1 pp mạnh tuyệt đối.

Định lý nó như sau: nếu \(f\left(x\right)\) và \(g\left(x\right)\) cùng tiến tới 0 (hoặc \(+\infty\) hoặc \(-\infty\)) khi \(x\rightarrow a\) nào đó thì:

\(\lim\limits_{x\rightarrow a}\dfrac{f\left(x\right)}{g\left(x\right)}=\lim\limits_{x\rightarrow a}\dfrac{f'\left(x\right)}{g'\left(x\right)}\)

Bài này có cả căn bậc 3 nên đạo hàm ko được đẹp lắm. Tự hiểu là giới hạn nha, vì công thức latex gõ giới hạn hơi phức tạp, tốn thời gian lắm, gõ 1 biểu thức thôi thì lẹ gấp chục lần:

\(\dfrac{\sqrt[]{6x-9}-\sqrt[3]{27x-54}}{\left(x-3\right)\left(x^2+3x-18\right)}=\dfrac{\dfrac{3}{\sqrt[]{6x-9}}-\dfrac{1}{\sqrt[3]{\left(x-2\right)^2}}}{x^2+3x-18+\left(x-3\right)\left(2x+3\right)}\)

Vậy là mất dạng vô định, thay số là xong.

Còn thêm bớt liên hợp thì khá đơn giản, do \(x\rightarrow3\) nên ta thay \(x=3\) vào 1 căn thức bất kì, ví dụ căn đầu, được \(\sqrt{6.3-9}=3\), vậy ta chỉ cần thêm bớt 3 vào tử số rồi liên hợp là được:

\(=\dfrac{\left(\sqrt[]{6x-9}-3\right)+\left(3-3\sqrt[3]{x-2}\right)}{\left(x-3\right)\left(x^2+3x-18\right)}\)

Ủa ko để ý tới pt \(x^2+3x-18=0\) còn có nghiệm \(x=3\) do ko tính toán :D

Vậy nghĩa là mẫu xuất hiện nghiệm kép, với dạng mẫu xuất hiện nghiệm kép thì ta cần liên hợp tử cũng phải xuất hiện nghiệm kép. Có 2 cách thực hiện: dùng máy tính và dùng tay.

Biểu thức liên hợp cần thêm vào phải là 1 hàm bậc nhất dạng \(ax+b\)

Theo quy tắc tiếp tuyến (của lớp 12), ta có \(a=\left(\sqrt{6x-9}\right)'_{x=3}\)

Hay trong máy tính thì bấm loading..., kết quả được 1

Vậy \(a=1\) (dùng tay thì đạo hàm biểu thức \(\left(\sqrt{6x-9}\right)'=\dfrac{3}{\sqrt{6x-9}}\) rồi thay x=3 cũng được 1)

Khi đó ta liên hợp: \(\sqrt{6x-9}-\left(x+b\right)\)

Liên hợp trên phải có nghiệm \(x=3\), tức là thay 3 vào thì nó =0

\(\Rightarrow\sqrt{6.3-9}-\left(3+b\right)=0\)

\(\Rightarrow b=0\)

Vậy biểu thức cần thêm bớt là \(1.x+0=x\), hay tử số ta cần phân tích thành:

\(\left(\sqrt[]{6x-9}-x\right)+\left(x-3\sqrt[3]{x-2}\right)\)

Gặp dạng giới hạn \(x\rightarrow a\) mà mẫu số phân tích xuất hiện \(\left(x-a\right)^2\) thì cứ làm như vậy là được

Quynh lu
Xem chi tiết
Nguyễn Võ Văn Hùng
3 tháng 2 2017 lúc 18:39

a) \(x^3-7x+6=x^3+3x^2-x^2-3x-2x^2-6x+2x+6\)

=\(x^2\left(x+3\right)-x\left(x+3\right)-2x\left(x+3\right)+2\left(x+3\right)\)

=\(\left(x+3\right)\left(x^2-x-2x+2\right)\)

=\(\left(x+3\right)\left(x-2\right)\left(x-1\right)\)

=\(\left\{\begin{matrix}x+3=0=>x=-3\\x-2=0=x=2\\x-1=0=>x=1\end{matrix}\right.\)

Nguyễn Võ Văn Hùng
3 tháng 2 2017 lúc 19:09

\(b...x^3-19x+30=0\)

\(=>x^3+5x^2-2x^2-10x-3x^2-15x+6x+30=0\)

=>\(x^2\left(x+5\right)-2x\left(x+5\right)-3x\left(x+5\right)+6\left(x+5\right)=0\)

=>\(\left(x+5\right)\left(x^2-2x-3x+6\right)=0\)

=>\(\left(x+5\right)\left(x-3\right)\left(x-2\right)=0\)

=>\(\left\{\begin{matrix}x-3=0=>x=3\\x-2=0=>x=2\\x+5=0=>x=-5\end{matrix}\right.\)

Vậy x=-5;2;3

Trần Nguyễn Tú UYên
Xem chi tiết
Nguyễn Ngọc Minh Anh
23 tháng 12 2021 lúc 21:13

A

Vũ Trọng Hiếu
23 tháng 12 2021 lúc 21:13

A

A