Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lan Hương
Xem chi tiết
Võ Ngọc Phương
1 tháng 10 2023 lúc 21:49

\(\left(3-x\right)^3=-\dfrac{27}{64}\)

\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)

\(=>3-x=\dfrac{-3}{4}\)

\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)

\(x=\dfrac{15}{4}\)

________

\(\left(x-5\right)^3=\dfrac{1}{-27}\)

\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)

\(=>x-5=\dfrac{-1}{3}\)

\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)

\(x=\dfrac{14}{3}\)

_____________

\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)

\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)

\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)

\(x=\dfrac{3}{2}+\dfrac{1}{2}\)

\(x=2\)

________

\(\left(2x-1\right)^2=\dfrac{1}{4}\)            

\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\)           hoặc              \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(=>2x-1=\dfrac{1}{2}\)                                       \(2x-1=\dfrac{-1}{2}\)

\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\)                               \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)

\(2x=\dfrac{3}{2}\)                                                     \(2x=\dfrac{1}{2}\)

\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\)                                     \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)

\(x=\dfrac{3}{4}\)                                                       \(x=\dfrac{1}{4}\)

____________

\(\left(2-3x\right)^2=\dfrac{9}{4}\)

\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\)                hoặc                  \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)

\(=>2-3x=\dfrac{3}{2}\)                                               \(2-3x=\dfrac{-3}{2}\)

\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\)                                      \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)

\(3x=\dfrac{1}{2}\)                                                            \(3x=\dfrac{7}{2}\)

\(x=\dfrac{1}{2}.\dfrac{1}{3}\)                                                          \(x=\dfrac{7}{2}.\dfrac{1}{3}\)

\(x=\dfrac{1}{6}\)                                                               \(x=\dfrac{7}{6}\)

______________

\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này

Đồng Đạo Quang Tiến
1 tháng 10 2023 lúc 21:50

(3-x)3=(-\(\dfrac{3}{4}\))3

3-x=-\(\dfrac{3}{4}\)

  x=3-(-\(\dfrac{3}{4}\))

  x=\(\dfrac{15}{4}\)

Nguyễn Minh An
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 11 2021 lúc 20:21

\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)

Rochelle
Xem chi tiết
Nguyễn Huy Tú
11 tháng 4 2017 lúc 21:58

\(\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)

\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{8^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)

\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...0...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)

\(=0\)

Vậy...

Lê Thu Hiền
Xem chi tiết
Ran Mori
Xem chi tiết
Thiên Hàn
29 tháng 8 2018 lúc 13:46

https://hoc24.vn/hoi-dap/question/655171.html

Lần sau ghi cho rõ đề

Nguyễn Lê Cẩm Nhung
Xem chi tiết
kagamine rin len
14 tháng 7 2016 lúc 22:05

a) (2+1)(2^2+1)(2^4+1)...(2^32+1)-2^64

=(2+1)(2-1)(2^2+1)(2^4+1)...(2^32+1)-2^64

=(2^2-1)(2^2+1)(2^4+1)...(2^32+1)-2^64

=(2^4-1)(2^4+1)....(2^32+1)-2^64

=......

=(2^32-1)(2^32+1)-2^64

=2^64-1-2^64=-1

b)Đặt A=(5+3)(5^2+3^2)(5^4+3^4)...(5^64+3^64)+(5^128-3^128)/2

đặt B=(5+3)(5^2+3^2)(5^4+3^4)...(5^64+3^64)

\(2B=\left(5-3\right)\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)

\(2B=\left(5^2-3^2\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)

\(2B=\left(5^4-3^4\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)\)

\(2B=.......\)

2B=(5^64-3^64)(5^64+3^64)

2B=5^128-3^128

B=(5^128-3^128)/2 (thế vào đề bài)

=> A=B+(5^128-3^128)/2=(5^128-3^128)/2+(5^128-3^128)/2=\(\frac{2\left(5^{128}-3^{128}\right)}{2}=\left(5^{128}-3^{128}\right)\)

đỗ Hoàng Gia HUy
14 tháng 7 2016 lúc 21:29

a) A = ( 2-1)(2+1)(22+1)...(232+1)-264

         =(22-1)(22+1)(24+1)... -264

       =....

       =264-1-264=1

câu b tương tự nhá

Nguyễn Hoàng Tú
Xem chi tiết
Khôi Bùi
29 tháng 8 2018 lúc 17:24

\(A=3\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)...\left(x^{64}+1\right)\)

\(\Leftrightarrow A=\frac{3\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)\left(x^{64}+1\right)}{x^2-1}\)

\(\Leftrightarrow A=\frac{3\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)\left(x^{64}+1\right)}{x^2-1}\)

\(\Leftrightarrow A=\frac{3\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)\left(x^{64}+1\right)}{x^2-1}\)

\(\Leftrightarrow A=\frac{3\left(x^{16}-1\right)\left(x^{16}+1\right)\left(x^{32}+1\right)\left(x^{64}+1\right)}{x^2-1}\)

\(\Leftrightarrow A=\frac{3\left(x^{32}-1\right)\left(x^{32}+1\right)\left(x^{64}+1\right)}{x^2-1}\)

\(\Leftrightarrow A=\frac{3\left(x^{64}-1\right)\left(x^{64}+1\right)}{x^2-1}\)

\(\Leftrightarrow A=\frac{3\left(x^{128}-1\right)}{x^2-1}\)

Võ Lan Nhi
Xem chi tiết
Nguyễn Xuân Tiến 24
5 tháng 11 2017 lúc 20:37

a, \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}=2^{64}-1-2^{64}=-1\)

b,\(B=\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)

\(=\dfrac{\left(5-3\right)\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)}{2}+\dfrac{5^{128}-3^{128}}{2}\)\(=\dfrac{\left(5^2-3^2\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{64}+3^{64}\right)+5^{128}-3^{128}}{2}\)

\(=\dfrac{\left(5^{64}-3^{64}\right)\left(5^{64}+3^{64}\right)+5^{128}-3^{128}}{2}=\dfrac{2.5^{128}}{2}=5^{128}\)

Ran Mori
Xem chi tiết
Thiên Hàn
29 tháng 8 2018 lúc 13:45

a) \(27x^3+27x^2+9x+1=64\)

\(\Rightarrow27x^3+27x^2+9x-63=0\)

\(\Rightarrow27x^3-27x^2+54x^2-54x+63x-63=0\)

\(\Rightarrow27x^2\left(x-1\right)+54x\left(x-1\right)+63\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(27x^2+54x+63\right)=0\)

\(\Rightarrow\left(x-1\right).9\left(3x^2+6x+7\right)=0\)

\(\Rightarrow\left(x-1\right)\left(3x^2+6x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x^2+6x+7=0\end{matrix}\right.\)

Mà ta có:

\(3x^2+6x+7\)

\(=3\left(x^2+2x+\dfrac{7}{3}\right)\)

\(=3\left(x^2+2x+1-1+\dfrac{7}{3}\right)\)

\(=3\left(x+1\right)^2+4\)

\(3\left(x+1\right)^2\ge0\) với mọi x

\(\Rightarrow3\left(x+1\right)^2+4\ge4\)

\(\Rightarrow3x^2+6x+7\) vô nghiệm

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

b) \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)

\(\Rightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)

\(\Rightarrow12x-8=4\)

\(\Rightarrow12x=12\)

\(\Rightarrow x=1\)

c) \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=2\)

\(\Rightarrow x^3-3x^2+3x-1-\left(x^3+3^3\right)+3\left(x^2-2^2\right)=2\)

\(\Rightarrow x^3-3x^2+3x-1-x^3-9+3x^2-12=2\)

\(\Rightarrow3x-22=2\)

\(\Rightarrow3x=24\)

\(\Rightarrow x=8\)

Anh Quỳnh
Xem chi tiết