Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ran Mori

Tìm x

a)\(27x^3+27x^2+9x+1=64\) b)\(\left(x-2\right)^3-x^2\left(x-6\right)=4\) c)\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=2\)
Thiên Hàn
29 tháng 8 2018 lúc 13:45

a) \(27x^3+27x^2+9x+1=64\)

\(\Rightarrow27x^3+27x^2+9x-63=0\)

\(\Rightarrow27x^3-27x^2+54x^2-54x+63x-63=0\)

\(\Rightarrow27x^2\left(x-1\right)+54x\left(x-1\right)+63\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(27x^2+54x+63\right)=0\)

\(\Rightarrow\left(x-1\right).9\left(3x^2+6x+7\right)=0\)

\(\Rightarrow\left(x-1\right)\left(3x^2+6x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x^2+6x+7=0\end{matrix}\right.\)

Mà ta có:

\(3x^2+6x+7\)

\(=3\left(x^2+2x+\dfrac{7}{3}\right)\)

\(=3\left(x^2+2x+1-1+\dfrac{7}{3}\right)\)

\(=3\left(x+1\right)^2+4\)

\(3\left(x+1\right)^2\ge0\) với mọi x

\(\Rightarrow3\left(x+1\right)^2+4\ge4\)

\(\Rightarrow3x^2+6x+7\) vô nghiệm

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

b) \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)

\(\Rightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)

\(\Rightarrow12x-8=4\)

\(\Rightarrow12x=12\)

\(\Rightarrow x=1\)

c) \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=2\)

\(\Rightarrow x^3-3x^2+3x-1-\left(x^3+3^3\right)+3\left(x^2-2^2\right)=2\)

\(\Rightarrow x^3-3x^2+3x-1-x^3-9+3x^2-12=2\)

\(\Rightarrow3x-22=2\)

\(\Rightarrow3x=24\)

\(\Rightarrow x=8\)


Các câu hỏi tương tự
Ran Mori
Xem chi tiết
Đồng Vy
Xem chi tiết
Trần Văn Hưng
Xem chi tiết
Hoàng Thùy Linh
Xem chi tiết
Phan Hà Thanh
Xem chi tiết
Võ Lan Nhi
Xem chi tiết
Dương Thị Yến Nhi
Xem chi tiết
Linh Nguyen
Xem chi tiết
Nguyễn Lê Việt ANh
Xem chi tiết