a) \(27x^3+27x^2+9x+1=64\)
\(\Rightarrow27x^3+27x^2+9x-63=0\)
\(\Rightarrow27x^3-27x^2+54x^2-54x+63x-63=0\)
\(\Rightarrow27x^2\left(x-1\right)+54x\left(x-1\right)+63\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(27x^2+54x+63\right)=0\)
\(\Rightarrow\left(x-1\right).9\left(3x^2+6x+7\right)=0\)
\(\Rightarrow\left(x-1\right)\left(3x^2+6x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x^2+6x+7=0\end{matrix}\right.\)
Mà ta có:
\(3x^2+6x+7\)
\(=3\left(x^2+2x+\dfrac{7}{3}\right)\)
\(=3\left(x^2+2x+1-1+\dfrac{7}{3}\right)\)
\(=3\left(x+1\right)^2+4\)
Vì \(3\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow3\left(x+1\right)^2+4\ge4\)
\(\Rightarrow3x^2+6x+7\) vô nghiệm
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
b) \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
\(\Rightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)
\(\Rightarrow12x-8=4\)
\(\Rightarrow12x=12\)
\(\Rightarrow x=1\)
c) \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=2\)
\(\Rightarrow x^3-3x^2+3x-1-\left(x^3+3^3\right)+3\left(x^2-2^2\right)=2\)
\(\Rightarrow x^3-3x^2+3x-1-x^3-9+3x^2-12=2\)
\(\Rightarrow3x-22=2\)
\(\Rightarrow3x=24\)
\(\Rightarrow x=8\)