a) (2x2)2 .(-3y)3.(-5xz)3
b) 2y3y2. xy3 . x2 .y2
c) (-2x2yz3)2 ( -3x3 y2 z)3
tìm bậc của các đa thức sau
1. Thu gọn đơn thức sau, cho biết phần hệ số, phần biến, bậc của đơn thức(x,y là biến)
a. -ax(xy3)2(-by)3
b. xy(-ax)2(-by)3
2. Thu gọn và sắp xếp đa thức sau theo lũy thừa giảm dần của biến
P(x)= 5x-4x4+x6+3-2x3-7x-x7+1-2x6+3x3+x7
2.
Bài 1:
a) Ta có: \(-ax\left(xy^3\right)^2\cdot\left(-by\right)^3\)
\(=-a\cdot x\cdot x^2\cdot y^6\cdot\left(-b\right)^3\cdot y^3\)
\(=abx^3y^9\)
b) Ta có: \(xy\cdot\left(-ax\right)^2\cdot\left(-by\right)^3\)
\(=xy\cdot a^2\cdot x^2\cdot b^3\cdot y^3\)
\(=a^2b^3x^3y^4\)
Bài 2:
Ta có: \(P\left(x\right)=5x-4x^4+x^6+3-2x^3-7x-x^7+1-2x^6+3x^3+x^7\)
\(=\left(-x^7+x^7\right)+\left(x^6-2x^6\right)-4x^4+\left(-2x^3+3x^3\right)+\left(5x-7x\right)+\left(3+1\right)\)
\(=-x^6-4x^4+x^3-2x+4\)
1. Thu gọn đơn thức sau, cho biết phần hệ số, phần biến, bậc của đơn thức(x,y là biến)
a. -ax(xy3)2(-by)3
b. xy(-ax)2(-by)3
Giải :
a. \(-ax\left(xy^3\right)^2\left(-by\right)^3=-a\cdot x\cdot x^2\cdot\left(y^3\right)^2\cdot\left(-b\right)^3\cdot y^3=-a\cdot\left(-b\right)^3\cdot\left(x\cdot x^2\right)\cdot\left(y^6\cdot y^3\right)=ab^3x^3y^9\)
Phần hệ số : ab3 . Phần biến x3y9
Bậc của đơn thức : 3+9=12
b. \(xy\left(-ax\right)^2\left(-by\right)^3=-a^2b^3x^3y^3\)
Phần hệ số : -a2b3. phần biến x3y3
Bậc : 3+3=6
Cho 2 đa thức : f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
a) Tìm h(x) = f(x) - g(x)
b) Tìm nghiệm của đa thức h(x)
HELP ME!!!THANKS CÁC CẬU NHIỀU LẮM Ạ!!
h(x)=5x+1
nghiệm_của_đa_thức_h(x)_là_-1/5
Cho 2 đa thức : f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
a) Tìm h(x) = f(x) - g(x)
b) Tìm nghiệm của đa thức h(x)
HELP ME!!!THANKS CÁC CẬU NHIỀU LẮM Ạ!!
a)h(x)=f(x)-g(x)
=(2x3 +3x2 -2x +3)-(2x3 +3x2 -7x +2)
=2x3 + 3x2 - 2x +3 - 2x3 -3x2 + 7x -2
=5x+1
b)h(x)=5x+1=0
=>5x=-1
x=\(\frac{-1}{5}\)
Cho hai đa thức
f ( x ) = - 2 x 2 - 3 x 3 - 5 x + 5 x 3 - x + x 2 + 4 x + 3 + 4 x 2 , g ( x ) = 2 x 2 - x 3 + 3 x + 3 x 3 + x 2 - x - 9 x + 2
a. Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến
a. Ta có:
f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
= 2x3 + 3x2 - 2x + 3 (0.5 điểm)
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
= 2x3 + 3x2 - 7x + 2 (0.5 điểm)
Cho hai đa thức
f ( x ) = - 2 x 2 - 3 x 3 - 5 x + 5 x 3 - x + x 2 + 4 x + 3 + 4 x 2 , g ( x ) = 2 x 2 - x 3 + 3 x + 3 x 3 + x 2 - x - 9 x + 2
c. Tìm nghiệm của h(x)
c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5
Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)
Tìm bậc của các đa thức sau (a là hằng số )
a, 2x - 5xy + 3x2
b, ax2 + 2x2 - 3
c, ax3 + 2xy - 5
d, 4y2 - 3y - 3y4
e, -3x5 - 1/2 x3y - 3/4 xy2 + 3x5 + 2
a)bậc của da thức 2x-5xy+3x2 là:5
b)bậc của da thức ax2+2x2 là:4
c)bậc của da thức ax3+2xy là:5
d)bậc của da thức 4y2-3y4 là:6
e)bậc của da thức -3x5-\(\dfrac{1}{2}\)x3y-\(\dfrac{3}{4}\)xy2+3x5+2 là:17
Câu 3. Cho 2 đa thức: M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + x2 – 6
N(x) = – x2 – x4 + 4x3 – x2 – 5x3 + 3x + 1 + x
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến, tìm bậc, hệ số cao nhất, hệ số tự do của đa thức M(x).
b) Tính P(x) = M(x) + N(x) ; Q(x) = M(x) – N(x)
c) Tính Q(x) tại x = –2.
d) Chứng minh đa thức H(x) = M(x) – 8x2 + x + 8 không có nghiệm.
a: \(M\left(x\right)=9x^4+2x^2-x-6\)
\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)
b: \(P\left(x\right)=8x^4-x^3+3x-5\)
\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)
Câu 3. Cho 2 đa thức: M(x) = 3x3 + x2 + 4x4 – x – 3x3 + 5x4 + x2 – 6
N(x) = – x2 – x4 + 4x3 – x2 – 5x3 + 3x + 1 + x
a) Thu gọn và sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến, tìm bậc, hệ
số cao nhất, hệ số tự do của đa thức M(x).
b) Tính P(x) = M(x) + N(x) ; Q(x) = M(x) – N(x)
c) Tính Q(x) tại x = –2.
d) Chứng minh đa thức H(x) = M(x) – 8x2 + x + 8 không có nghiệm
a: \(M\left(x\right)=9x^4+2x^2-x-6\)
\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)
b: \(P\left(x\right)=8x^4-x^3+3x-5\)
\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)
a) tìm a để đa thức 4x3 - 2x2+ a chia hết cho đa thức 2x - 3
b) Tìm giá trị a để đa thức 3x3 + 2x2 + x + a chia cho đa thức x + 1 có số dư bằng 2
\(a,\Leftrightarrow4x^3-2x^2+a=\left(2x-3\right).a\left(x\right)\)
Thay \(x=\dfrac{3}{2}\Leftrightarrow4.\dfrac{27}{8}-2.\dfrac{9}{4}+a=0\)
\(\Leftrightarrow\dfrac{27}{2}-\dfrac{9}{2}+a=0\\ \Leftrightarrow a=-9\)
\(b,\Leftrightarrow3x^3+2x^2+x+a=\left(x+1\right).b\left(x\right)+2\)
Thay \(x=-1\Leftrightarrow-3+2-1+a=2\Leftrightarrow a=4\)