Rút gọn biểu thức sau :
(3x + 2 )^2 + (3x -2 )^2 - 2(3x+2)(3x - 2) +x
1a. rút gọn biểu thức sau A = \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x-6}{4-9x^2}\)
b. biến đổi biểu thức sau thành phân thức đại số B = \(\dfrac{1}{2}+\dfrac{x}{1-\dfrac{x}{x+2}}\)
\(a,A=\dfrac{3x+2-3x+2+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{1}{3x+2}\\ b,B=\dfrac{1}{2}+\dfrac{x}{\dfrac{x+2-x}{x+2}}=\dfrac{1}{2}+\dfrac{x}{\dfrac{2}{x+2}}=\dfrac{1}{2}+\dfrac{x\left(x+2\right)}{2}\\ B=\dfrac{1+x^2+2x}{2}=\dfrac{\left(x+1\right)^2}{2}\)
rút gọn các biểu thức sau a.x^2-1/x^2+2x+1 b.x^2-1/x^2-2x+1 c.1/3x-2 - 1/3x+2 - 3x-6/4-9x^2
a: \(=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2}=\dfrac{x-1}{x+1}\)
b: \(=\dfrac{\left(x-1\right)\cdot\left(x+1\right)}{\left(x-1\right)^2}=\dfrac{x+1}{x-1}\)
c: \(=\dfrac{3x+2-3x+2+3x-6}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{1}{3x+2}\)
Bạn lưu ý viết đề bằng công thức toán để được hỗ trợ tốt hơn. Viết thế này nhìn khá khó đọc.
Để viết công thức toán bạn nhấn biểu tượng $\sum$ góc trái khung soạn thảo.
RÚT GỌN BIỂU THỨC SAU : (3x+2)2 + ( 3x-2)2 - 2 (3x+2).(3x-2)
a (x+3)^2 +x(2x+5y^2)
b (3x-2)^2 - (3x-1) (3x+1)
rút gọn biểu thức
\(a,=x^2+6x+9+2x^2+5xy^2=3x^2+6x+5xy^2+9\\ b,=9x^2-12x+4-9x^2+1=-12x+5\)
b: \(=9x^2-12x+4-9x^2+1=-12x+5\)
Rút gọn các biểu thức sau
A. ( 3x-2)2 - ( 2x + 3) ×( 2x-3)
B. 3x ( 5x -2 ) - ( 2x2 - 1 ) ( 2 - x )
a) \(\left(3x-2\right)^2-\left(2x+3\right)\left(2x-3\right)\)
\(=9x^2-12x+4-4x^2+9\)
\(=5x^2-12x+13\)
b) \(3x\left(5x-2\right)-\left(2x^2-1\right)\left(2-x\right)\)
\(=15x^2-6x-\left(4x^2-2x^3-2+x\right)\)
\(=15x^2-6x-4x^2+2x^3+2-x\)
\(=11x^2-7x+2x^3+2\)
rút gọn biểu thức
(x+2y)2-(x-2y)2
(3x+y)2+(x-y)2
-(x+5)2-(x-3)2
(3x-2)2-(3x-1)2
\(\left(x+2y\right)^2-\left(x-2y\right)^2\\ =\left[\left(x+2y\right)-\left(x-2y\right)\right]\left[\left(x+2y\right)+\left(x-2y\right)\right]\\ =\left(x+2y-x+2y\right)\left(x+2y+x-2y\right)\\ =4y.\left(2x\right)\\ =8xy\)
\(\left(3x+y\right)^2+\left(x-y\right)^2\\ =\left[\left(3x\right)^2+2.3x.y+y^2\right]+\left(x^2-2xy+y^2\right)\\ =6x^2+6xy+y^2+x^2-2xy-y^2\\ =7x^2+4xy\)
\(-\left(x+5\right)^2-\left(x-3\right)^2\\ =-\left(x^2+10x+25\right)-\left(x^2-6x+9\right)\\ =-x^2-10x-25-x^2+6x-9\\ =-2x^2-4x-34\)
\(\left(3x-2\right)^2-\left(3x-1\right)^2\\ =\left[\left(3x-2\right)-\left(3x-1\right)\right]\left[\left(3x-2\right)+\left(3x-1\right)\right]\\ =\left(3x-2-3x+1\right)\left(3x-2+3x-1\right)\\ =-1.\left(6x-3\right)\\ =-6x+3\)
rút gọn rồi tính giá trị của biểu thức sau với x=-19 A=(3x+2)^2+(2x-7)^2-2(3x+2)(2x+5)
Sửa: \(A=\left(3x+2\right)^2+\left(2x-7\right)^2-2\left(3x+2\right)\left(2x-7\right)\)
\(A=\left(3x+2\right)^2-2\left(3x+2\right)\left(2x-7\right)+\left(2x-7\right)^2\)
\(A=\left[\left(3x+2\right)-\left(2x-7\right)\right]^2\)
\(A=\left(3x+2-2x+7\right)^2\)
\(A=\left(x+9\right)^2\)
Thay \(x=-19\) vào A ta có:
\(A=\left(-19+9\right)^2=\left(-10\right)^2=100\)
Vậy: ...
RÚT GỌN BIỂU THỨC SAU:
\(\left(3x-4\right)^2+\left(4-x\right)^2-2\left(3x-4\right)\left(x-4\right)\)
\(\left(3x-4\right)^2-2\left(3x-4\right)\left(x-4\right)+\left(x-4\right)^2\)
\(=\left(3x-4-x+4\right)^2\)
\(=4x^2\)
\(\left(3x-4\right)^2+\left(4-x\right)^2-2\left(3x-4\right)\left(x-4\right)=\left(3x-4\right)^2-2\left(3x-4\right)\left(x-4\right)+\left(x-4\right)^2=\left(3x-4-x+4\right)^2=\left(2x\right)^2=4x^2\)
Rút gọn các biểu thức sau
\(c,\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2\)
\(=\left(3x+1-3x-5\right)^2\)
\(=\left(-4\right)^2=16\)
Rút gọn biểu thức sau: (2x + 1)2 + (3x – 1)2 + 2(2x + 1)(3x – 1)
(2x + 1)2 + (3x – 1)2 + 2(2x + 1)(3x – 1)
= (2x + 1)2 + 2.(2x + 1)(3x – 1) + (3x – 1)2
= [(2x + 1) + (3x – 1)]2
= (2x + 1 + 3x – 1)2
= (5x)2
= 25x2