Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Anh Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2021 lúc 20:33

a) Ta có: \(9+4\sqrt{5}\)

\(=5+2\cdot\sqrt{5}\cdot2+4\)

\(=\left(\sqrt{5}+2\right)^2\)(đpcm)

b) Ta có: \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)

\(=\sqrt{5}-2-\sqrt{5}\)

=-2(ddpcm)

c) Ta có: \(\left(4-\sqrt{7}\right)^2\)

\(=16-2\cdot4\cdot\sqrt{7}+7\)

\(=23-8\sqrt{7}\)(đpcm)

d) Ta có: \(\sqrt{17-12\sqrt{2}}+2\sqrt{2}\)

\(=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}+2\sqrt{2}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}+2\sqrt{2}\)

\(=3-2\sqrt{2}+2\sqrt{2}=3\)(đpcm)

Kiêm Hùng
25 tháng 6 2021 lúc 20:39

\(a.VT=4+4\sqrt{5}+5=2^2+4\sqrt{5}+\sqrt{5}^2=\left(2+\sqrt{5}\right)^2=VP\)

\(b.\) Dựa vào câu a ta có: \(9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)

\(VT=\left|\sqrt{5}-2\right|-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2=VP\)

\(c.VT=16-8\sqrt{7}+7=4^2-8\sqrt{7}+\sqrt{7}^2=\left(4-\sqrt{7}\right)^2=VP\)

\(d.\) 

Ta có: \(17-12\sqrt{2}=8-12\sqrt{2}+9=\left(2\sqrt{2}\right)^2-12\sqrt{2}+3^2=\left(2\sqrt{2}-3\right)^2\)

\(VT=\left|2\sqrt{2}-3\right|+2\sqrt{2}=3-2\sqrt{2}+2\sqrt{2}=3=VP\)

Lương Ngọc Anh
Xem chi tiết
YangSu
26 tháng 6 2023 lúc 8:16

\(c,\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\\ =\sqrt{\sqrt{3^2}+2\sqrt{3}.1+1}+\sqrt{\sqrt{3^2}-2\sqrt{3}.1+1}\\ =\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|\\ =\sqrt{3}+1+\sqrt{3}-1\\ =2\sqrt{3}\)

\(d,\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\\ =\sqrt{\sqrt{5^2}+2.2\sqrt{5}+2^2}-\sqrt{\sqrt{5^2}-2.2\sqrt{5} +2^2}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\\ =\sqrt{5}+2-\sqrt{5}+2\\ =4\)

Akashi Seijuro
Xem chi tiết
Akai Haruma
20 tháng 7 2020 lúc 11:35

1.

$\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3}}-\sqrt{3+1-2\sqrt{3}}$

$=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}$

$=|\sqrt{3}+1|-|\sqrt{3}-1|=2$

2.

\(\sqrt{12+6\sqrt{3}+\sqrt{12-6\sqrt{3}}}=\sqrt{12+6\sqrt{3}+\sqrt{9+3-2\sqrt{9.3}}}=\sqrt{12+6\sqrt{3}+\sqrt{(3-\sqrt{3})^2}}\)

\(=\sqrt{12+6\sqrt{3}+3-\sqrt{3}}=\sqrt{15+5\sqrt{3}}\)

Akai Haruma
20 tháng 7 2020 lúc 11:39

3.

\(\sqrt{9-4\sqrt{2}+\sqrt{9+4\sqrt{2}}}=\sqrt{9-4\sqrt{2}+\sqrt{8+1+2\sqrt{8.1}}}\)

\(=\sqrt{9-4\sqrt{2}+\sqrt{2\sqrt{2}+1)^2}}=\sqrt{9-4\sqrt{2}+2\sqrt{2}+1}=\sqrt{10-2\sqrt{2}}\)

4.

\(\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{9-\sqrt{32}}}}=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{8+1-2\sqrt{8.1}}}}\)

\(=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{(\sqrt{8}-1)^2}}}\) \(=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{8}-1}}=\sqrt{\sqrt{2}+2+\sqrt{3+2\sqrt{2}}}\)

\(=\sqrt{\sqrt{2}+2+\sqrt{(2+1+2\sqrt{2}}}=\sqrt{\sqrt{2}+2+\sqrt{(\sqrt{2}+1)^2}}=\sqrt{\sqrt{2}+2+\sqrt{2}+1}\)

\(=\sqrt{3+2\sqrt{2}}=\sqrt{(\sqrt{2}+1)^2}=\sqrt{2}+1\)

Akai Haruma
20 tháng 7 2020 lúc 11:44

5.

\(\sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}=\sqrt{6+2\sqrt{5}-\sqrt{20+9+2\sqrt{20.9}}}\)

\(=\sqrt{6+2\sqrt{5}-\sqrt{(\sqrt{20}+3)^2}}=\sqrt{6+2\sqrt{5}-(\sqrt{20}+3)}=\sqrt{3}\)

6.

\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\)

\(=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{(2+5+2\sqrt{2.5})+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{2+5+2\sqrt{2.5}}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{(\sqrt{2}+\sqrt{5})^2}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}-\sqrt{(\sqrt{2}+\sqrt{5})^2}=|\sqrt{2}+\sqrt{5}+1|-|\sqrt{2}+\sqrt{5}|=1\)

phamthiminhanh
Xem chi tiết
Akai Haruma
26 tháng 6 2021 lúc 16:19

\(A=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3.1}}-\sqrt{3+1-2\sqrt{3.1}}\)

\(=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}=|\sqrt{3}+1|-|\sqrt{3}-1|=2\)

\(B=\sqrt{4+5-2\sqrt{4.5}}+\sqrt{4+5+2\sqrt{4.5}}=\sqrt{(\sqrt{4}-\sqrt{5})^2}+\sqrt{(\sqrt{4}+\sqrt{5})^2}\)

\(=|\sqrt{4}-\sqrt{5}|+|\sqrt{4}+\sqrt{5}|=2\sqrt{5}\)

 

Akai Haruma
26 tháng 6 2021 lúc 16:31

\(C\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7+1-2\sqrt{7.1}}-\sqrt{7+1+2\sqrt{7.1}}\)

\(=\sqrt{(\sqrt{7}-1)^2}-\sqrt{(\sqrt{7}+1)^2}\)

\(=|\sqrt{7}-1|-|\sqrt{7}+1|=-2\Rightarrow C=-\sqrt{2}\)

----------------------------

\(7+4\sqrt{3}=(2+\sqrt{3})^2\Rightarrow 10\sqrt{7+4\sqrt{3}}=10(2+\sqrt{3})\)

\(\Rightarrow \sqrt{48-10\sqrt{7+4\sqrt{3}}}=\sqrt{28-10\sqrt{3}}=\sqrt{(5-\sqrt{3})^2}=5-\sqrt{3}\)

\(\Rightarrow 3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}=3+5(5-\sqrt{3})=28-5\sqrt{3}\)

\(\Rightarrow D=\sqrt{5\sqrt{28-5\sqrt{3}}}\)

 

Akai Haruma
26 tháng 6 2021 lúc 16:35

Cách 1:

\(E=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})=(4+\sqrt{15})(8-2\sqrt{15})\)

\(=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)

Cách 2:

\(E^2=(4+\sqrt{15})^2(\sqrt{10}-\sqrt{6})^2(4-\sqrt{15})=(4+\sqrt{15})(4-\sqrt{15})(4+\sqrt{15}).(16-4\sqrt{15})\)

\(=(16-15)(4+\sqrt{15})(4-\sqrt{15}).4=(16-15)(16-15).4=4\)

Vì $E>0$ nên $E=2$

Oriana.su
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2021 lúc 22:25

a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)

\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(=4-3\cdot A\)

\(\Leftrightarrow A^3+3A-4=0\)

\(\Leftrightarrow A^3-A+4A-4=0\)

\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)

\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)

\(\Leftrightarrow A=1\)

HoàngMiner
Xem chi tiết
An Đinh Khánh
Xem chi tiết
YangSu
25 tháng 6 2023 lúc 15:42

\(a,VT=9+4\sqrt{5}=\sqrt{5^2}+2.2\sqrt{5}+2^2=\left(\sqrt{5}+2\right)^2=VP\left(dpcm\right)\)

\(b,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)

\(\Leftrightarrow\sqrt{9-4\sqrt{5}}=\sqrt{5}-2\)

Ta có : \(VT=\sqrt{9-4\sqrt{5}}=\sqrt{\sqrt{5^2}-2.2\sqrt{5}+2^2}=\sqrt{\left(\sqrt{5}-2\right)^2}=\left|\sqrt{5}-2\right|=\sqrt{5}-2=VP\left(dpcm\right)\)

HoàngIsChill
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 15:14

1) \(\dfrac{\sqrt{5}+2}{\sqrt{5}-2}=9+4\sqrt{5}\)

2) \(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{2}-\sqrt{5}}=\dfrac{\sqrt{10}\left(\sqrt{5}-\sqrt{2}\right)}{-\left(\sqrt{5}-\sqrt{2}\right)}=-\sqrt{10}\)

3) \(\dfrac{\sqrt{20}-3\sqrt{10}}{3-\sqrt{5}}=\dfrac{\sqrt{10}\left(\sqrt{5}-3\right)}{-\left(\sqrt{5}-3\right)}=-\sqrt{10}\)

4) \(\dfrac{6-2\sqrt{5}}{3+\sqrt{5}}=\dfrac{\left(6-2\sqrt{5}\right)\left(3-\sqrt{5}\right)}{4}=\dfrac{18-6\sqrt{5}-6\sqrt{5}+10}{4}=\dfrac{28-12\sqrt{5}}{4}=7-3\sqrt{5}\)

5)\(\dfrac{9+4\sqrt{5}}{\sqrt{5}+2}=\sqrt{5}+2\)

Hân Dung Vũ
Xem chi tiết
31. Nguyễn Thị Hồng Thắm
Xem chi tiết
nthv_.
25 tháng 10 2021 lúc 22:50

\(\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-\dfrac{11\left(4-\sqrt{5}\right)}{16-5}=\sqrt{5}-4+\sqrt{5}=2\sqrt{5}-4\)

Nguyễn Lê Phước Thịnh
25 tháng 10 2021 lúc 22:50

\(=\sqrt{5}-4+\sqrt{5}=2\sqrt{5}-4\)