Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khai Nguyen Duc
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 23:09

b: Xét (O) có 

ΔBAC nội tiếp đường tròn

AB là đường kính

Do đó: ΔBAC vuông tại C

Xét (O) có

OE là một phần đường kính

BC là dây

E là trung điểm của BC

Do đó: OE\(\perp\)BC

c: Xét ΔDEC vuông tại E và ΔDEB vuông tại E có 

DE chung

CE=BE

Do đó: ΔDEC=ΔDEB

Suy ra: DC=DB

Xét ΔOBD và ΔOCD có 

OB=OC

OD chung

DB=DC

Do đó: ΔOBD=ΔOCD

Suy ra: \(\widehat{OBD}=\widehat{OCD}\)

\(\Leftrightarrow\widehat{OBD}=90^0\)

hay DB là tiếp tuyến có B là tiếp điểm của (O)

Khai Nguyen Duc
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 22:41

b: Xét (O) có 

ΔBAC nội tiếp đường tròn

AB là đường kính

Do đó: ΔBAC vuông tại C

Xét (O) có 

OE là một phần đường kính

BC là dây

E là trung điểm của BC

Do đó: OE\(\perp\)BC tại E

c: Xét ΔDEC vuông tại E và ΔDEB vuông tại E có 

DE chung

CE=BE

Do đó: ΔDEC=ΔDEB

Suy ra: DC=DB

Xét ΔOCD và ΔOBD có 

OC=OB

DC=DB

OD chung

Do đó: ΔOCD=ΔOBD

Suy ra: \(\widehat{OCD}=\widehat{OBD}\)

\(\Leftrightarrow\widehat{OCD}=90^0\)

hay DB là tiếp tuyến của (O)

Khai Nguyen Duc
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 20:12

b: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó: ΔABC vuông tại C

Xét ΔABC có 

O là trung điểm của AB

E là trung điểm của BC

Do đó: OE là đường trung bình của ΔBAC

Suy ra: OE\(\perp\)CB

Phía sau một cô gái
29 tháng 8 2021 lúc 20:24
a) Vẽ hình

a) Xét đường tròn (O) có AB  là đường kính và △ ABC nội tiếp đường tròn (O)

⇒ \(\widehat{ACB}=90^0\) hay △ ABC vuông tại C.

Có: OC = OB (do cùng bằng bán kính), suy ra O cách đều hai điểm C và B,

⇒  O nằm trên trung trực của BC.

Có EC = EB (do E là trung điểm của BC), suy ra E cách đều hai điểm B và C

⇒ E nằm trên trung trực của BC.

Ta có E và O  đều nằm trên đường trung trực của đoạn BC

⇒ OE là trung trực của đoạn BC.

 OE ⊥ BC (đpcm)

b)  Vì tiếp tuyến tại C của (O) cắt OE  ở D nên ta có D nằm trên EO, suy ra D nằm trên đường trung trực của BC ⇒ DB = DC (tính chất đường trung trực)

Xét ΔCOD và ΔBOD có:

OC = OB (do cùng là bán kính của đường tròn)

OD chung

DB = DC (cmt)

⇒ ΔCOD = ΔBOD ( c − c − c )

\(\widehat{OCD}=\widehat{OBD}=90^0\)

⇒  BD ⊥ OB

Suy ra DB  là tiếp tuyến của (O)  (đpcm).

c)Vì DB  là tiếp tuyến của (O) (cmt) 

  \(\widehat{OBD}=90^0\)       ⇒          \(\widehat{CBO}+\widehat{CBD}=90^0\)       \(\left(1\right)\)

Vì OD  là trung trực của BC (cmt) 

⇒ OD ⊥ BC ⇒ \(\widehat{DEB}=90^0\)\(\widehat{ODB}+\widehat{CBD}=90^0\)     \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\widehat{CBO}=\widehat{ODB}\) ( cùng phụ với \(\widehat{DBC}\) )

Xét △ ODB và △ CBH có:

\(\widehat{CHB}=\widehat{OBD}=90^0\)

\(\widehat{CBO}=\widehat{ODB}\) ( cmt )

△ ODB \(\approx\) △ CBH ( g − g )

\(\dfrac{OB}{CH}=\dfrac{OD}{BC}\)

⇒  OB .  BC = OD . CH

△ ODB ∼ △ CBH ( g − g )

Mà có OB = OC (do cùng là bán kính của đường tròn)

Suy ra: CB.OC=OD.HC (đpcm)

Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 21:03

c: Xét ΔDEB vuông tại E và ΔDEC vuông tại E có 

DE chung

BE=CE

Do đó: ΔDEB=ΔDEC

Suy ra: DB=DC

Xét ΔDCO và ΔDBO có 

DC=DB

DO chung

OC=OB

Do đó:ΔDCO=ΔDBO

Suy ra: \(\widehat{OCD}=\widehat{OBD}\)

\(\Leftrightarrow\widehat{OBD}=90^0\)

hay DB là tiếp tuyến có B là tiếp điểm

????????????????
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2022 lúc 22:06

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

ΔOBC cân tại O

mà OE là trung tuyến

nên OE vuông góc với BC và OE là phân giác của góc BOC

b: Xét ΔOBD và ΔOCD có

OB=OC

góc BOD=góc COD
OD chung

Do đó: ΔOBD=ΔOCD

=>góc OBD=90 độ

=>DB là tiếp tuyên của (O)

Phạm Dương Hồng Nga
Xem chi tiết
Ami Mizuno
22 tháng 12 2020 lúc 9:02

Bạn tự vẽ hình giúp mình nha!

Ta có: OC=OB=R

Ta có: E là trung điểm BC

Suy ra: OE\(\perp\)CB

Tam giác OCB cân tại O, suy ra \(\widehat{OCB}=\widehat{OBC}\)

Ta có: \(\widehat{HCB}=\widehat{COD}\) (cùng phụ với góc \(\widehat{OCB}=\widehat{OBC}\))

Xét hai tam giác OCD và CHB, có:

\(\widehat{HCB}=\widehat{COD}\)

H và C là hai góc vuông

\(\Rightarrow\Delta OCD\sim\Delta CHB\)

\(\Rightarrow\dfrac{OC}{OD}=\dfrac{HC}{CB}\) \(\Leftrightarrow OC.OB=HC.OD\left(đccm\right)\)

Nguyễn Đức Anh
Xem chi tiết
Nguyen Thi Trinh
28 tháng 12 2016 lúc 20:31

đề sai à p...sao AB<AC đc

₮ØⱤ₴₮
24 tháng 11 2019 lúc 21:25

đề sai thật mà

Khách vãng lai đã xóa
jztr
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 7 2023 lúc 9:22

b: ΔOBC cân tại O có OE là đường cao

nên OE là phân giác của góc COB

Xét ΔBOE và ΔCOE có

OB=OC

góc BOE=góc COE

OE chung

=>ΔBOE=ΔCOE

=>góc OCE=góc OBE=90 độ

=>EC là tiếp tuyến của (O)

c: OB=OC

EB=EC

=>OE là trung trực của BC

=>sđ cung DB=sđ cung DC

=>góc BAD=góc CAD

=>AD là phân giác của góc BAC

Quan1
Xem chi tiết
Trần Mai Ngọc
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
29 tháng 4 2020 lúc 22:00

E C M K I H A B O

a . Ta có : \(C\in\left(O\right),AB=2R\Rightarrow\widehat{ACB}=90^0\Rightarrow\Delta ABC\) vuông tại C

c . Vì \(OK\perp BC\Rightarrow B,C\) đối xứng qua OK

\(\Rightarrow\widehat{DCO}=\widehat{DBO}=90^0\Rightarrow DC\)  là tiếp tuyến của (O) 

d . Ta có \(AC=R\Rightarrow\Delta AOC\) đều 

\(\Rightarrow\widehat{COM}=\widehat{MOB}=60^0\Rightarrow\Delta OCM,OMB\) đều 

\(\Rightarrow OC=OM=OB=MB=MC\)=> ◊OBMC là hình thoi

e . Ta có : 

\(\Delta ACO\) đều 

\(\Rightarrow CH==\frac{R\sqrt{3}}{2}\Rightarrow CI=IH=\frac{R\sqrt{3}}{4}\)

\(\Rightarrow\frac{CI}{DB}=\frac{CI}{BC}=\frac{\frac{R\sqrt{3}}{4}}{R\sqrt{3}}=\frac{1}{4}=\frac{AH}{AB}=\frac{EI}{EB}\)

\(\Rightarrow\Delta ECI~\Delta EDB\left(c.g.c\right)\Rightarrow\widehat{CEI}=\widehat{DEB}\Rightarrow E,C,D\) thẳng hàng 

Khách vãng lai đã xóa