Tìm GTLN
\(C=\dfrac{9}{\sqrt{4x^2+10-4x}}\)
Tìm GTLN
\(C=\dfrac{9}{\sqrt{4x^2+10-4x}}\)
xét mẫu thức ta có:
\(\sqrt{4x^2+10-4x}\)=\(\sqrt{\left(2x\right)^2-2\cdot2x+1+9}\)=\(\sqrt{\left(2x-1\right)^2+9}\)\(\ge\sqrt{9}=3\)
\(\Rightarrow\dfrac{4}{\sqrt{4x^2+10-4x}}\ge\dfrac{4}{3}\)(dấu =xay ra khi và chỉ khi x=\(\dfrac{1}{2}\))
2.tìm x
a)\(\sqrt{x^2-6x+9}\)
b)\(\sqrt{x^2-2x+1}\)
c)\(\sqrt{4x+12}-3\sqrt{x+3}+7\sqrt{9x+27}=20\)
d)\(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
a) \(\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)
\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x
⇒x∈\(R\)
b) \(\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)
\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x
⇒x∈\(R\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)
tìm gtln, gtnn của D=\(\dfrac{8x+3}{4x^2+9}\)
Bài toán này cho kết quả rất xấu, vì vậy nằm ngoài khả năng của học sinh lớp 8
Muốn giải thì phải sử dụng kĩ thuật miền giá trị, cần kiến thức delta của lớp 9
Giải các phương trình sau:
a) \(\sqrt{x^2-4+4}=2-x\)
b) \(\sqrt{4x-8}-\dfrac{1}{5}\sqrt{25x-50}=3\sqrt{x-2}-1\)
c) \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
d) \(\dfrac{1}{2}\sqrt{x-2}-4\sqrt{\dfrac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
e)\(\sqrt{49-28x+4x^2}-5=0\)
f) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
g) x2 - 4x - 2\(\sqrt{2x-5}+5=0\)
h)\(\sqrt{3x-2}=\sqrt{x+1}\)
i) x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
k) \(\sqrt{x^2-3x}-\sqrt{x-3}=0\)
l)\(\sqrt{x^2-4}+\sqrt{x-2}=0\)
m) \(4\sqrt{x+1}=x^2-5x+14\)
n) \(\sqrt{x^2-6x+9}-\sqrt{4x^2+4x+1}=0\)
c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
\(\Leftrightarrow2\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=4\)
hay x=5
e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)
\(\Leftrightarrow\left|2x-7\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
a. ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$
$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$
$\Leftrightarrow x\leq 2$
b. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$
$\Leftrightarrow 1=2\sqrt{x-2}$
$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$
$\Leftrightarrow \frac{1}{4}=x-2$
$\Leftrightarrow x=\frac{9}{4}$ (tm)
c. ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \sqrt{x-1}+\sqrt{9}.\sqrt{x-1}-\sqrt{4}.\sqrt{x-1}=4$
$\Leftrightarrow \sqrt{x-1}+3\sqrt{x-1}-2\sqrt{x-1}=4$
$\Leftrightarrow 2\sqrt{x-1}=4$
$\Leftrightarrow \sqrt{x-1}=2$
$\Leftrightarrow x-1=4$
$\Leftrightarrow x=5$ (tm)
d. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \frac{1}{2}\sqrt{x-2}-4\sqrt{\frac{4}{9}}\sqrt{x-2}+\sqrt{9}.\sqrt{x-2}-5=0$
$\Leftrightarrow \frac{1}{2}\sqrt{x-2}-\frac{8}{3}\sqrt{x-2}+3\sqrt{x-2}-5=0$
$\Leftrightarrow \frac{5}{6}\sqrt{x-2}-5=0$
$\Leftrightarrow \sqrt{x-2}=6$
$\Leftrightarrow x-2=36$
$\Leftrightarrow x=38$ (tm)
Tìm GTLN của biểu thức :
B = \(\dfrac{2010}{4x+20\sqrt{x}+30}\)
\(B=\dfrac{2010}{4x+20\sqrt{x}+30}\)
\(B=\dfrac{2010}{\left(2\sqrt{x}\right)^2+2\cdot2\sqrt{x}\cdot5+25+5}\)
\(B=\dfrac{2010}{\left(2\sqrt{x}+5\right)^2+5}\)
Ta có: \(\left(2\sqrt{x}+5\right)^2+5\ge5\)
\(\Rightarrow B=\dfrac{2010}{\left(2\sqrt{x}+5\right)^2+5}\le\dfrac{2010}{5}=402\)
Vậy: \(B_{min}=402\)
cho \(x^2+y^2=1\).Tìm GTLN và GTNN:
P=\(\sqrt{6+4x-2y}+\sqrt{9-4x-4y}\)
bạn có thể dùng bđt phụ này :
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
và đây là cách chứng minh
Bất đẳng thức tương đương :
\(a^2+b^2+a^2+b^2\ge a^2+b^2+2ab\)
\(< =>a^2+b^2\ge2ab\)
\(< =>\left(a-b\right)^2\ge0\)*đúng*
Bài 1: Tìm x để biểu thức có nghĩa
a) \(\dfrac{-5}{\sqrt{10x+2}}\) d)\(\sqrt{\dfrac{3-12x}{-4}}\)
b) \(\sqrt{\dfrac{-5}{10x+2}}\) e)\(\sqrt{x^2+1}\)
c)\(\sqrt{\dfrac{8-4x}{10}}\) f) \(^{\dfrac{10}{\sqrt{2020-2021}}}\)
g) \(\sqrt{\dfrac{2x-8}{x^2+1}}\)
Giúp mk vs, sắp pk nộp r :<<
Thanks ạ