GPT: 3x2-10x+12+4(x+1). \(\sqrt{x-3}\) =0
GPT:
1, \(6x^2+10x-92+\sqrt{\left(x+70\right)\left(2x^2+4x+16\right)}=0\)
2,\(x+3+\sqrt{1-x^2}=3\sqrt{x+1}+\sqrt{1-x}\)
ĐKXĐ:...
a. Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+4x+16}=a>0\\\sqrt{x+70}=b\ge0\end{matrix}\right.\)
\(\Rightarrow6x^2+10x-92=3a^2-2b^2\)
Pt trở thành:
\(3a^2-2b^2+ab=0\)
\(\Leftrightarrow\left(a+b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow3a=2b\)
\(\Leftrightarrow9\left(2x^2+4x+16\right)=4\left(x+70\right)\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\)
Phương trình trở thành:
\(a^2+2+ab=3a+b\)
\(\Leftrightarrow a^2-3a+2+ab-b=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-2\right)+b\left(a-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(a+b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a+b=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=1\\\sqrt{x+1}+\sqrt{1-x}=2\end{matrix}\right.\)
\(\Leftrightarrow...\)
1. giải phương trình bậc hai một ẩn
a, 3x2+7x+2=0
b,\(\dfrac{x^2}{3}+\dfrac{4x}{5}-\dfrac{1}{12}\)=0
c\(\left(5-\sqrt{2}\right).x^2-10x+5x+\sqrt{2}=0\)
d,(x-1)(x+2)=70
`a,3x^2+7x+2=0`
`<=>3x^2+6x+x+2=0`
`<=>3x(x+2)+x+2=0`
`<=>(x+2)(3x+1)=0`
`<=>x=-2\or\x=-1/3`
d) Ta có: (x-1)(x+2)=70
\(\Leftrightarrow x^2+2x-x-2-70=0\)
\(\Leftrightarrow x^2+x-72=0\)
\(\Leftrightarrow x^2+9x-8x-72=0\)
\(\Leftrightarrow x\left(x+9\right)-8\left(x+9\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=8\end{matrix}\right.\)
Vậy: S={8;-9}
`d,(x+1)(x+2)=70`
`<=>x^2+3x+2=70`
`<=>x^2+3x-68=0`
`<=>(x+3/2)^2=281/4`
`<=>x=(+-\sqrt{281}-3)/2`
GPT \(\sqrt{x-1}+\sqrt{9-x}+2\sqrt{-x^2+10x-9}=12\)
phả là 10x chứ
đặt 2 căn đầu bằng a
bình phương a lên
Gpt
\(\sqrt{3x+3}-\sqrt{5-2x}-x^3+3x^2+10x-16=0\)
Tính giá trị của phân thức:
a) x 2 − 1 2 x 2 − 3 x + 1 với x ≠ 1 và x ≠ 1 2 tại 2 x + 1 = 3 ;
b) 3 x 2 − 10 x + 3 x 2 − 4 x + 3 với x ≠ 2 ; x ≠ 3 tại x 2 − 8 x + 15 = 0 .
\(\sqrt{x^2-1}-\sqrt{10x-x^2-9}=\sqrt{2x^2-14x+12}\)
GPT
\(\sqrt{\left(x-1\right)\left(x+1\right)}-\sqrt{\left(x-1\right)\left(-x+9\right)}-\sqrt{\left(2x-12\right)\left(x-1\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x+1}-\sqrt{9-x}-\sqrt{2x-12}\right)=0\)
giải nốt nhá
sai thfi thông cảm nha
\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
gpt
GPT \(\sqrt{x^2-3x+2}=\sqrt{10x-20}-\sqrt{x-3}\)
Các bạn giúp mình với. Tks
1/ Gpt 4x2 - 8(2x+3)\(\sqrt{2x-1}=7-44x\)
2/ gpt x3- x2 - 10x -2 = \(\sqrt[3]{7x^2+23x+12}\)
3/ Choa,b,c > 0 và thỏa a+b+c =3
CM : \(\frac{a}{a+2bc}+\frac{b}{b+2ca}+\frac{c}{c+2ab}\ge1\)
Bài 1:
Đk:\(x\ge\frac{1}{2}\)
Đặt \(\sqrt{2x-1}=t\Rightarrow2x=t^2+1\)
\(pt\Leftrightarrow\left(t^2+1\right)^2-8\left(t^2+4\right)t=7-22\left(t^2+1\right)\)
\(\Leftrightarrow t^4-8t^3+24t^2-32t+16=0\)
\(\Leftrightarrow\left(t-2\right)^4=0\Leftrightarrow t=2\Leftrightarrow\sqrt{2x-1}=2\)
\(\Leftrightarrow2x-1=4\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\) (thỏa mãn)
Bài 2:
Cộng 2 vế với \(7x^2+23x+12\) ta được:
\(\left(x+2\right)^3+\left(x+2\right)=\left(7x^2+23x+12\right)+\sqrt[3]{7x^2+23x+12}\)
\(\Leftrightarrow\left(x+2\right)^3=7x^2+23x+12\)
\(\Leftrightarrow x^3+6x^2+12x+8=7x^2+23x+12\)
\(\Leftrightarrow\left(x-4\right)\left(x^2+3x+1\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}x=4\\x=\frac{\sqrt{5}-3}{2}\end{matrix}\right.\) (thỏa mãn)