\(\dfrac{x}{3}=\dfrac{y}{4}vàxy=192\)
tìm x, y biết
a) \(\dfrac{x}{5}=\dfrac{y}{25}vàx+y=60\)
b) \(\dfrac{x}{5}=\dfrac{y}{7}vàxy=140\)
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{25}=\dfrac{x+y}{5+25}=\dfrac{60}{30}=2\)
\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=2\times5=10\)
\(\Rightarrow\dfrac{y}{25}=2\Rightarrow y=2\times25=50\)
Vậy\(\left\{{}\begin{matrix}x=10\\y=50\end{matrix}\right.\)
b)
\(\dfrac{x}{5}=\dfrac{y}{7}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{9}\right)^3\Rightarrow\dfrac{x}{5}\times\dfrac{x}{5}=\dfrac{x}{5}\times\dfrac{y}{7}=\dfrac{x\times y}{5\times7}=\dfrac{140}{35}=4=\left(2\right)^2\)
\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=2\times5=10\)
\(\Rightarrow\dfrac{y}{7}=2\Rightarrow y=2\times7=14\)
Vậy \(\left\{{}\begin{matrix}x=10\\y=14\end{matrix}\right.\)
\(\dfrac{x}{3}=\dfrac{y}{4}\) và x.y = 192
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và x + y + z = \(-90\)
\(x:y:z=3:8:5\) và 3x + y \(-2z=14\)
1) \(\dfrac{x}{3}=\dfrac{y}{4}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
\(\Rightarrow xy=12k^2=192\Rightarrow k=\pm4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm12\\y=\pm16\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\\left\{{}\begin{matrix}x=-12\\y=-16\end{matrix}\right.\end{matrix}\right.\)
2) Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{-90}{9}=-10\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-10\right).2=-20\\y=\left(-10\right).3=-30\\z=\left(-10\right).5=-50\end{matrix}\right.\)
3) Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2z}{10}=\dfrac{3x+y-2z}{9+8-10}=\dfrac{14}{7}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.8=16\\z=2.5=10\end{matrix}\right.\)
tìm x y z biết
\(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}\),xyz=192
\(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}\)
\(\Leftrightarrow\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z-3}{5}=k\)
=>x-1=3k; y-2=4k; z-3=5k
=>x=3k+1;y=4k+3;z=5k+3
xyz=192
=>(3k+1)(4k+3)(5k+3)=192
=>(12k^2+13k+3)(5k+3)=192
=>60k^3+36k^2+65k^2+39k+15k+9=192
=>60k^3+101k^2+54k-183=0
=>k=0,92
=>x=3k+1=3,76; y=4k+3=6,68; z=7,6
Tìm x,y,z biết
a, \(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}\) và xyz = 192
b, \(\dfrac{x^{3^{ }}+y^3}{6}=\dfrac{x^3-2y^3}{4}\)và x6.y6=64
b, \(\dfrac{x^3+y^3}{6}\) = \(\dfrac{x^3-2y^3}{4}\)và x6.y6=64
=>(x3+y3 ).4=(x3-2y3).6
=>4x3+4y3=6x3-12y3
=> 4y3 + 12y3= 6x3-4x3
=> 15y3=2x3
Làm được thế này thoy
Câu 1:
a)\(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3};x+y+z=18\)
b)\(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3};x\cdot y\cdot z=192\)
c)\(2\cdot x=3\cdot y;5\cdot y=3\cdot z;3\cdot x+3\cdot y-7\cdot z=35\)
Câu 2:Tìm 3 số biết tổng các bình phương của chúng bằng 481.Số thứ 2 bằng \(\dfrac{4}{3}\)số thứ nhất và bằng \(\dfrac{3}{4}\)số thứ 3
Câu 1:
c: 2x=3y
nên x/3=y/2
=>x/9=y/6
5y=3z
nên y/3=z/5
=>y/6=z/10
=>x/9=y/6=z/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{3x+3y-7z}{3\cdot9+3\cdot6-7\cdot10}=\dfrac{35}{-25}=-\dfrac{7}{5}\)
Do đó: x=-63/5; y=-42/5; z=-14
Bài 2:
Gọi ba số lần lượt là a,b,c
Theo đề, ta có: 4/3a=b=3/4c
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{4}}=\dfrac{b}{1}=\dfrac{c}{\dfrac{4}{3}}\)
\(\Leftrightarrow\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}\)
Đặt \(\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}=k\)
=>a=9k; b=12k; c=16k
Theo đề, ta có: \(a^2+b^2+c^2=481\)
\(\Leftrightarrow81k^2+144k^2+256k^2=481\)
=>k2=1
Trường hợp 1: k=1
=>a=9; b=12; c=16
Trường hợp 2: k=-1
=>a=-9; b=-12; c=-16
Các bạn giúp mik vs.(lm đc hết thì càng tốt ^-^)
Tĩm,y,z
d,\(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}\) và xyz=192
e,\(\dfrac{x^3+y^3}{6}=\dfrac{x^3-2y^3}{4}\) và x6y6=64
f,\(\dfrac{x+4}{6}=\dfrac{3y-1}{8}=\dfrac{3y-x-5}{x}\)
Tìm x,y,z trong dãy tỉ số bằng nhau
1)\(\dfrac{3x}{8}=\dfrac{3y}{64}=\dfrac{3z}{216}\)và \(2x^2+2y^2.z^2=1\)
2) \(\dfrac{2x+1}{5}=\dfrac{4y-5}{9}=\dfrac{2x+4y-4}{7x}\)
3) \(\dfrac{x^3+y^3}{6}=\dfrac{x^3-2y^3}{4}\)và x6 . y6 =14
4) \(\dfrac{x+4}{6}=\dfrac{3y-1}{8}=\dfrac{3y-x-5}{x}\)
5) \(\dfrac{3}{x-1}=\dfrac{4}{y-2}=\dfrac{5}{z-3}\)và x.y.z=192
6)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{x.y}{200}\)
7)\(\dfrac{x+1}{2}=\dfrac{y-1}{3}=\dfrac{z+2}{4}=\dfrac{x+y+z+2}{2x+5}\)
8) \(\dfrac{15}{x-9}=\dfrac{20}{y-12}=\dfrac{40}{z-24}\)và x.y = 1200
9)\(\dfrac{40}{x-30}=\dfrac{20}{y-15}=\dfrac{28}{z-21}\) và x.y.z = 22400
10)15x = -10y =6z và x.y.z = -30000
11) Cho\(\dfrac{x+1}{3}=\dfrac{y-2}{5}=\dfrac{2z+14}{9}\)và x+z=y
12) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\)và \(\dfrac{y}{5}=\dfrac{z}{6}\).Tính M=\(\dfrac{2x+3y+4z}{3x+4y+5z}\)
a)\(3x+\dfrac{4}{9}=2x+\dfrac{11}{18}\)
b)\(\dfrac{7}{12}+\dfrac{2}{3}:x=\dfrac{5}{8}\)
c)\(|2,5-x|-\dfrac{1}{5}=1,2\)
d)\(2^{x+1}+2^{x+2}=192\)
Tim x
\(\text{a) }3x+\dfrac{4}{9}=2x+\dfrac{11}{18}\\ \Leftrightarrow3x-2x=\dfrac{11}{18}-\dfrac{4}{9}\\ \Leftrightarrow x=\dfrac{1}{6}\\ \text{Vậy }x=\dfrac{1}{6}\\ \)
\(\text{b) }\dfrac{7}{12}+\dfrac{2}{3}:x=\dfrac{5}{8}\\ \Leftrightarrow\dfrac{2}{3}:x=\dfrac{1}{24}\\ \Leftrightarrow x=16\\ \text{Vậy }x=16\\ \)
\(\text{c) }\left|2.5-x\right|-\dfrac{1}{5}=1.2\\ \Leftrightarrow\left|2.5-x\right|=1.4\\ \Leftrightarrow\left[{}\begin{matrix}2.5-x=-1.4\\2.5-x=1.4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3.9\\x=1.1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{39}{10}\\x=\dfrac{11}{10}\end{matrix}\right.\\ \text{Vậy }x=\dfrac{39}{10}\text{ hoặc }x=\dfrac{11}{10}\\ \)
\(\text{d) }2^{x+1}+2^{x+2}=192\\ \Leftrightarrow2^x\cdot2+2^x\cdot4=192\\ \Leftrightarrow2^x\left(2+4\right)=192\\ \Leftrightarrow2^x\cdot6=192\\ \Leftrightarrow2^x=32\\ \Leftrightarrow2^x=2^5\\ \Leftrightarrow x=5\\ \text{Vậy }x=5\\ \)
Bài 1: Tìm x,y,z:
a) \(\dfrac{x}{y}\)=\(\dfrac{10}{9}\); \(\dfrac{y}{z}\)=\(\dfrac{3}{4}\); x-y+z =78
b)\(\dfrac{x}{y}=\dfrac{9}{7}\);\(\dfrac{y}{z}\)=\(\dfrac{7}{3}\); x-y+z =-15
c)\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{3}\); x2 +y2+z2=200
a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)
\(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)
b)Ta có: \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)
Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)