Cho A = \(\sqrt{3-x}+\sqrt{3+x}\)
a.Tìm x để A = \(\sqrt{10}\)
b.Tìm Min A và Max A
a.tìm a+b+c=2\(\sqrt{a}+2\sqrt{b-3}+2\sqrt{c}\)
b.tìm x,y,z thỏa mãn x+y+z+8=2\(\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
Mình chia thành 2 phần lời giải để thuận tiện trong việc quan sát nhé!
a. \(a+b+c=2\sqrt{a}+2\sqrt{b-3}+2\sqrt{c}\left(ĐK:a\ne0;b\ne3;c\ne0\right)\\ \Leftrightarrow a-2\sqrt{a}+1+b-3-2\sqrt{b-3}+1+c-2\sqrt{c}+1=0\\ \Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-3}-1\right)^2+\left(\sqrt{c}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=4\\c=1\end{matrix}\right.\)
Vậy \(\left(a;b;c\right)=\left(1;4;1\right)\)
b. \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\left(ĐK:x\ne1;y\ne2;z\ne3\right)\\ x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{y-3}+9=0\\ \Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(2;4;6\right)\)
P/s: Trước khi kết luận, kiểm tra lại điều kiện thấy thỏa mãn rồi nên mình kết luận luôn nhé. Còn trong bài làm bạn nên ghi kết quả kiểm tra điều kiện cạnh giá trị mới tìm được nhé.
Cho A = \(\sqrt{3-x}+\sqrt{3+x}\)
a.Tìm x để A = \(\sqrt{10}\)
b.Tìm Min A và Max A
a ) Để A = \(\sqrt{10}\Leftrightarrow\sqrt{3-x}+\sqrt{3+x}=\sqrt{10}\)
\(\Leftrightarrow3-x+3+x+2\sqrt{9-x^2}=10\)
\(\Leftrightarrow6+2\sqrt{9-x^2}=10\)
\(\Leftrightarrow2\sqrt{9-x^2}=4\)
\(\Leftrightarrow\sqrt{9-x^2}=2\)
\(\Leftrightarrow9-x^2=4\)
\(\Leftrightarrow-x^2=-5\)
\(\Leftrightarrow x^2=5\)
\(\Leftrightarrow x=\pm\sqrt{5}\)
:v Fan Hương Tràm
b) Áp dụng BĐT Bunyakovsky, ta có:
\(\left(3-x+3+x\right)2\ge\left(\sqrt{3-x}+\sqrt{3+x}\right)^2\)
\(\Leftrightarrow12\ge A^2\)
\(\Leftrightarrow A\le\sqrt{12}=2\sqrt{3}\)
Max \(A=2\sqrt{3}\Leftrightarrow x=0\)
Lại có: \(A^2=3-x+3+x+2.\sqrt{3-x}.\sqrt{3+x}\ge3-x+3+x=6\)
\(\Leftrightarrow A\ge\sqrt{6}\)
Min \(A=\sqrt{6}\Leftrightarrow\)\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Cho \(A=\left(\frac{5x}{4x^2-1}+\frac{1}{1-2x}-\frac{2}{1+2x}\right):\frac{x-1}{1+4x+4x^2}\)
\(B=\sqrt{4-2\sqrt{3}}+\sqrt{19-8\sqrt{3}}\)
a.Tìm x để A có nghĩa.Rút gọn A,B
b.Tìm x để A=B
Bài 1:Cho x\(\ge0\).Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của các biểu thức sau:
1)A=3x+2\(\sqrt{x}\)+1min
2)A=x+3\(\sqrt{x}\)-3min
3)A=-2x-3\(\sqrt{x}\)+2max
4)A=-4x-5\(\sqrt{x}\)-3max
5)A=x-2\(\sqrt{x}\)+2min
6)A=x-4\(\sqrt{x}\)-5min
7)A=-x+6\(\sqrt{x}\)+5max
8)A=-x+8\(\sqrt{x}\)-10max
9)A=\(\dfrac{2}{\sqrt{x}+1}\)max
10)A=\(\dfrac{4}{\sqrt{x}+2}\)max
11)A=\(\dfrac{-3}{\sqrt{x}+3}\)min
12)A=\(\dfrac{-5}{\sqrt{x}+4}\)min
13)A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)max
14)A=\(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)max
15)A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)min
16)A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+4}\)min
17)A=\(\dfrac{x+3}{\sqrt{x}+1}\)min
18)A=\(\dfrac{x+5}{\sqrt{x}+2}\)min
19)A=\(\dfrac{x+12}{\sqrt{x}+2}\)min
20)A=\(\dfrac{x+7}{\sqrt{x}+3}\)min
21)A=\(\dfrac{x+9}{\sqrt{x}+4}\)min
22)A=\(\dfrac{x+24}{\sqrt{x}+5}\)min
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
1.Tìm max và Min
\(A=\sqrt{3-x}+\sqrt{x+7}\)
2. Cho \(a^2+b^2+c^2=1\)
\(CMR:a+b+c+ab+bc+ca\text{≤}1+\sqrt{3}\)
1.Tìm max và Min
\(A=\sqrt{3-x}+\sqrt{x+7}\)
2. Cho \(a^2+b^2+c^2=1\)
\(CMR:a+b+c+ab+bc+ca\text{≤}1+\sqrt{3}\)
\(1,\)
Áp dụng BĐT Bunhiacopski:
\(A^2=\left(\sqrt{3-x}+\sqrt{x+7}\right)^2\le\left(1^2+1^2\right)\left(3-x+x+7\right)=2\cdot10=20\)
Dấu \("="\Leftrightarrow3-x=x+7\Leftrightarrow x=-2\)
\(A^2=3-x+x+7+2\sqrt{\left(3-x\right)\left(x+7\right)}\\ A^2=10+2\sqrt{\left(3-x\right)\left(x+7\right)}\ge10\)
Dấu \("="\Leftrightarrow\left(3-x\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)
CÂU 2 THAM KHẢO:
Chứng minh a+b+c+ab+bc+ac < =1+căn 3 - Phạm Phú Lộc Nữ
cho: \(A=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right)\div\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
a. rút gọn A
b.tìm m để \(P=A-9\sqrt{x}\)đạt max
" m " ở đâu vậy bạn ,sửa đề câu b) : Tìm x để P =\(A-9\sqrt{x}\)
Bài giải
a) ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
A = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
= \(\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
= \(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
= \(\frac{\sqrt{x}-1}{\sqrt{x}}\)
Vậy A = \(\frac{\sqrt{x}-1}{\sqrt{x}}\)với x > 0 ; x \(\ne1\)
b) P = A - \(9\sqrt{x}=\frac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=1-\left(\frac{1}{\sqrt{x}}+9\sqrt{x}\right)\)
Áp dụng BĐT Côsi : \(\frac{1}{\sqrt{x}}+9\sqrt{x}\ge2.3=6\)
Dấu "=" xảy ra khi \(\frac{1}{\sqrt{x}}=9\sqrt{x}\Leftrightarrow1=9x\Leftrightarrow x=\frac{1}{9}\)
=> P \(\ge-5\).Vậy Max P = -5 khi x = \(\frac{1}{9}\)
ukm mk nhầm
thanks nha
+) Tìm min
\(E=\dfrac{1+\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{xy+yz+zx}\)
+) Tìm max và min
\(F=\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\)
Trong đó a,b,c>0 và \(min\left\{a,b,c\right\}\ge\dfrac{1}{4}max\left\{a,b,c\right\}\)