Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc son
Xem chi tiết
👁💧👄💧👁
2 tháng 9 2021 lúc 16:29

Mình chia thành 2 phần lời giải để thuận tiện trong việc quan sát nhé!

a. \(a+b+c=2\sqrt{a}+2\sqrt{b-3}+2\sqrt{c}\left(ĐK:a\ne0;b\ne3;c\ne0\right)\\ \Leftrightarrow a-2\sqrt{a}+1+b-3-2\sqrt{b-3}+1+c-2\sqrt{c}+1=0\\ \Leftrightarrow\left(\sqrt{a}-1\right)^2+\left(\sqrt{b-3}-1\right)^2+\left(\sqrt{c}-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=4\\c=1\end{matrix}\right.\)

Vậy \(\left(a;b;c\right)=\left(1;4;1\right)\)

👁💧👄💧👁
2 tháng 9 2021 lúc 16:34

b. \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\left(ĐK:x\ne1;y\ne2;z\ne3\right)\\ x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{y-3}+9=0\\ \Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(2;4;6\right)\)

P/s: Trước khi kết luận, kiểm tra lại điều kiện thấy thỏa mãn rồi nên mình kết luận luôn nhé. Còn trong bài làm bạn nên ghi kết quả kiểm tra điều kiện cạnh giá trị mới tìm được nhé.

Em gái mưa
Xem chi tiết
Trần Dương
6 tháng 10 2017 lúc 19:38

a ) Để A = \(\sqrt{10}\Leftrightarrow\sqrt{3-x}+\sqrt{3+x}=\sqrt{10}\)

\(\Leftrightarrow3-x+3+x+2\sqrt{9-x^2}=10\)

\(\Leftrightarrow6+2\sqrt{9-x^2}=10\)

\(\Leftrightarrow2\sqrt{9-x^2}=4\)

\(\Leftrightarrow\sqrt{9-x^2}=2\)

\(\Leftrightarrow9-x^2=4\)

\(\Leftrightarrow-x^2=-5\)

\(\Leftrightarrow x^2=5\)

\(\Leftrightarrow x=\pm\sqrt{5}\)

Unruly Kid
6 tháng 10 2017 lúc 19:48

:v Fan Hương Tràm

b) Áp dụng BĐT Bunyakovsky, ta có:

\(\left(3-x+3+x\right)2\ge\left(\sqrt{3-x}+\sqrt{3+x}\right)^2\)

\(\Leftrightarrow12\ge A^2\)

\(\Leftrightarrow A\le\sqrt{12}=2\sqrt{3}\)

Max \(A=2\sqrt{3}\Leftrightarrow x=0\)

Lại có: \(A^2=3-x+3+x+2.\sqrt{3-x}.\sqrt{3+x}\ge3-x+3+x=6\)

\(\Leftrightarrow A\ge\sqrt{6}\)

Min \(A=\sqrt{6}\Leftrightarrow\)\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Liz Nguyen
Xem chi tiết
Cao Thu Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2022 lúc 19:51

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)

\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)

Dấu '=' xảy ra khi x=0

2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)

Dấu '=' xảy ra khi x=0

3: \(A=-2x-3\sqrt{x}+2< =2\)

Dấu '=' xảy ra khi x=0

5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)

Dấu '=' xảy ra khi x=1

Minh Hiếu
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 17:41

\(1,\)

Áp dụng BĐT Bunhiacopski:

\(A^2=\left(\sqrt{3-x}+\sqrt{x+7}\right)^2\le\left(1^2+1^2\right)\left(3-x+x+7\right)=2\cdot10=20\)

Dấu \("="\Leftrightarrow3-x=x+7\Leftrightarrow x=-2\)

 

Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 17:46

\(A^2=3-x+x+7+2\sqrt{\left(3-x\right)\left(x+7\right)}\\ A^2=10+2\sqrt{\left(3-x\right)\left(x+7\right)}\ge10\)

Dấu \("="\Leftrightarrow\left(3-x\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)

Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 17:48

CÂU 2 THAM KHẢO:

Chứng minh a+b+c+ab+bc+ac < =1+căn 3 - Phạm Phú Lộc Nữ

Nguyễn Thu Trang
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
22 tháng 4 2020 lúc 7:20

" m " ở đâu vậy bạn ,sửa đề câu b) : Tìm x để P =\(A-9\sqrt{x}\)

Bài giải

a) ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

 A = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)

     \(\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

     = \(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

       = \(\frac{\sqrt{x}-1}{\sqrt{x}}\)

Vậy A = \(\frac{\sqrt{x}-1}{\sqrt{x}}\)với x > 0 ; x \(\ne1\)

b) P = A - \(9\sqrt{x}=\frac{\sqrt{x}-1}{\sqrt{x}}-9\sqrt{x}=1-\left(\frac{1}{\sqrt{x}}+9\sqrt{x}\right)\)

Áp dụng BĐT Côsi : \(\frac{1}{\sqrt{x}}+9\sqrt{x}\ge2.3=6\)

Dấu "=" xảy ra khi \(\frac{1}{\sqrt{x}}=9\sqrt{x}\Leftrightarrow1=9x\Leftrightarrow x=\frac{1}{9}\)

=> P \(\ge-5\).Vậy Max P = -5 khi x = \(\frac{1}{9}\)

Khách vãng lai đã xóa
Nguyễn Thu Trang
22 tháng 4 2020 lúc 8:27

ukm mk nhầm

thanks nha

Khách vãng lai đã xóa
Hi Mn
Xem chi tiết