Tìm GTLN của biểu thức \(D=-2x^2+5x\)
ìm gtln,gtnn của các biểu thức sau
A=|x-2|+|y+1|-5
B= -|2x+1|-|y-2|+3
a: \(A\ge-5\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=-1
Tìm GTLN của biểu thức
B= -2x^2-5x+10
\(B=-2\left(x^2+2.x.\frac{5}{4}+\frac{25}{16}-\frac{105}{16}\right)\)
\(=-2\left(x+\frac{5}{4}\right)^2+\frac{105}{8}\le\frac{105}{8}\)
a/Tìm GTNN của biểu thức:
S=9x^2-5x+1/9x+10
b/ Tìm GTLN biểu thức A= 2x^2-4x+7/x^2-2x+2
Tìm GTLN của biểu thức: Q(x)= -x2+2x+5x
đề bài sai hả bạn? là \(-x^2+2x+5\) đúng ko?
\(-x^2+2x+5=-\left(x^2-2x-5\right)\)
\(=-\left(x^2-2x+1-6\right)\)
\(=-\left(x-1\right)^2+6\)
Ta luôn có: \(-\left(x-1\right)^2\le0\) với mọi x
⇔ \(-\left(x-1\right)^2+6\le6\) với mọi x
Suy ra GTLN của biểu thức trên là 6
Dấu bằng xảy ra khi và chỉ khi : \(\left(x-1\right)^2=0\)
⇔ \(x-1=0\)
⇔ \(x=1\)
Vậy biểu thức trên đạt GTNN là 6 khi x = 1
tìm giá trị nhỏ nhất của x;y sao cko biểu thức( 5x-2)+(7y-3) có giá trị nhỏ nhất
tìm GTLN của biểu thức B= -2x2+5x-8
Ta có: \(B=-\left(2x^2-5x+8\right)\)
\(\Rightarrow B=-\left[2x^2-2.2x.\frac{5}{4}+\left(\frac{5}{4}\right)^2\right]+\frac{27}{4}\)
\(\Rightarrow B=-\left(2x-\frac{5}{4}\right)^2+\frac{27}{4}\)
\(\Rightarrow B=27-\left(2x-\frac{5}{4}\right)^2\)
Vì \(\left(2x-\frac{5}{4}\right)^2\ge0\Rightarrow B\le\frac{27}{4}\)
Dấu "=" xảy ra khi \(2x-\frac{5}{4}=0\Rightarrow x=\frac{5}{8}\)
Vậy Bmax=\(\frac{27}{4}\) khi \(x=\frac{5}{8}\)
-B = 2x^2 - 5x + 8 = 2.(x^2 - 5/2 x + 25/16 ) + 39/8 = 2.(x-5/4)^2 + 39/8 >= 39/8
=> B <= -39/8
Dấu "=" xảy ra <=> x-5/4 = 0 <=> x=5/4
Vậy Max B = -39/8 <=> x=5/4
mình làm cho nhé :
-2x2+5x-8
=-(2x2-5x)-8
= -2(x2-2.\(\frac{5}{2}\).x +(\(\frac{5}{2}\))2 - (\(\frac{5}{2}\))2) -8
-2(x-\(\frac{5}{2}\))2-\(\frac{9}{2}\)
Nhận xét : -2(x-\(\frac{5}{2}\))2 <hoạc bằng 0 ; -2(x-\(\frac{5}{2}\))2 -\(\frac{9}{2}\)>hoặc bàng 0
=>B(min)=\(\frac{9}{2}\)dấu = xảy ra khi x =\(\frac{5}{2}\)công sức của
Tìm GTNN hoặc GTLN của các biểu thức sau:
Tìm GTNN hoặc GTLN của các biểu thức sau:
a, A= x2-2x+5y2-4y+2020
b, B= (x-5)2-(3x-7)2
c, C=5-x2+2x-9y2-6y
d, D=-5x2-9y2-7x+18y-2015
e, E=5x2+y2-4xy+18x-4y+28
f, F=x4+x2-6x+9
a)
$x^2-2x+5y^2-4y+2020=(x^2-2x+1)+5(y^2-\frac{4}{5}y+\frac{2^2}{5^2})+\frac{10091}{5}$
$=(x-1)^2+5(y-\frac{2}{5})^2+\frac{10091}{5}$
$\geq \frac{10091}{5}$
Vậy GTNN của biểu thức là $\frac{10091}{5}$. Giá trị này đạt được tại $(x-1)^2=(y-\frac{2}{5})^2=0$
$\Leftrightarrow x=1; y=\frac{2}{5}$
b)
\(B=(x-5)^2-(3x-7)^2=(x-5-3x+7)(x-5+3x-7)\)
\(=(2-2x)(4x-12)=8(1-x)(x-3)=8(x-3-x^2+3x)\)
\(=8(4x-3-x^2)=8[1-(x^2-4x+4)]=8[1-(x-2)^2]\)
Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $1-(x-2)^2\leq 1$
$\Rightarrow B=8[1-(x-2)^2]\leq 8$. Vậy GTLN của biểu thức là $8$ khi $x=2$
c)
$C=5-x^2+2x-9y^2-6y=5-(x^2-2x)-(9y^2+6y)$
$=7-(x^2-2x+1)-(9y^2+6y+1)=7-(x-1)^2-(3y+1)^2$
Vì $(x-1)^2\geq 0; (3y+1)^2\geq 0$ với mọi $x,y$ nên $C=7-(x-1)^2-(3y+1)^2\leq 7$
Vậy GTLN của $C$ là $7$. Giá trị này đạt được tại $(x-1)^2=(3y+1)^2=0$
$\Leftrightarrow x=1; y=\frac{-1}{3}$
d)
$D=-5x^2-9y^2-7x+18y-2015=-(5x^2+7x)-(9y^2-18y)-2015$
$=-5(x^2+\frac{7}{5}x+\frac{7^2}{10^2})-9(y^2-2y+1)-\frac{40071}{20}$
$=-5(x+\frac{7}{10})^2-9(y-1)^2-\frac{40071}{20}$
$\leq -\frac{40071}{20}$
Vậy GTLN của biểu thức là $\frac{-40071}{20}$ khi $x=-\frac{-7}{10}; y=1$
e)
$E=5x^2+y^2-4xy+18x-4y+28=x^2+(4x^2+y^2-4xy)+18x-4y+28$
$=x^2+(2x-y)^2+4(2x-y)+10x+28$
$=(x^2+10x+25)+(2x-y)^2+4(2x-y)+4-1$
$=(x+5)^2+(2x-y+2)^2-1\geq -1$
Vậy GTNN của $E$ là $-1$. Giá trị này xác định tại \(\left\{\begin{matrix} (x+5)^2=0\\ (2x-y+2)^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-5\\ y=-8\end{matrix}\right.\)
f)
$F=x^4+x^2-6x+9=(x^4-2x^2+1)+(3x^2-6x+3)+5$
$=(x^4-2x^2+1)+3(x^2-2x+1)+5$
$=(x^2-1)^2+3(x-1)^2+5$
$\geq 5$
Vậy GTNN của $F$ là $5$. Giá trị này đạt được khi $(x^2-1)^2=(x-1)^2=0$
$\Leftrightarrow x=1$
1. Tìm GTNN của biểu thức :
A = 4x2 - 4x + 5 ; B = 3x2 + 6x - 1
2. Tìm GTLN của biểu thức :
A = 10 + 6x - x2 ; B = 7 - 5x - 2x2
1.
A=\(4x^2-4x+5\)
A=\(\left(2x\right)^2-4x+1+4\)
A=\(\left(2x-1\right)^2+4\)
vì \(\left(2x-1\right)^2\)≥0 với mọi x
⇒\(\left(2x-1\right)^2+4\)≥4 với mọi x
Dấu"="xảy ra khi \(\left(2x-1\right)^2\)=0
⇔2x-1=0
⇔x=\(\dfrac{1}{2}\)
Vậy GTNN của A là 4 khi x=\(\dfrac{1}{2}\)
B=\(3x^2+6x-1\)
B=3(\(\left(x^2+2x\right)\)-1
B=\(3.\left(x^2+2x-1+1\right)-1\)
B=\(3.\left(x+1\right)^2-3-1\)
B=\(3\left(x-1\right)^2-4\)
vì \(3.\left(x-1\right)^2\)≥0 với mọi x
⇒\(3\left(x-1\right)^2-4\)≥-4 với mọi x
dấu "= "xảy ra khi \(3.\left(x-1\right)^2=0\)
⇔x-1=0
⇔x=1
vậy GTNN của B=-4 khi x=1
Tìm GTLN của biểu thức:
A=-x^2+6x-15
B=-2x^2+8x-15
C=-3^2+2x-1
D=-5x^2-25x+49
Tìm GTNN của biểu thức:
A=x^2-4x+7
B=x^2+8x
C=2x^2+4x+15
D=3x^2-2x-1
Tìm GTLN:
\(A=-x^2+6x-15\)
\(=-\left(x^2-6x+15\right)\)
\(=-\left(x^2-2.x.3+9+6\right)\)
\(=-\left(x+3\right)^2-6\le0\forall x\)
Dấu = xảy ra khi:
\(x-3=0\Leftrightarrow x=3\)
Vậy Amax = - 6 tại x = 3
Tìm GTNN :
\(A=x^2-4x+7\)
\(=x^2+2.x.2+4+3\)
\(=\left(x+2\right)^2+3\ge0\forall x\)
Dấu = xảy ra khi:
\(x+2=0\Leftrightarrow x=-2\)
Vậy Amin = 3 tại x = - 2
Các câu còn lại làm tương tự nhé... :)