Cho tứ giác ABCD. CM
a,AB<BC+CD+AD
b,AC+BD<AB+BC+CD+AD
(sử dụng bất đẳng thức tam giác)
Cho tứ giác ABCD có AB = 3 cm, BC = 10 cm, CD = 12 cm, AD = 5 cm, đường chéo BD = 6 cm.
Chứng minh:
a. ΔABD ∼ ΔBDC b. Tứ giác ABCD là hình thang
a: Xét ΔABD và ΔBDC có
AB/BD=BD/DC=AD/BC
Do đó: ΔABD∼ΔBDC
b: Ta có: ΔABD=ΔBDC
nên \(\widehat{ABD}=\widehat{BDC}\)
hay AB//CD
=>ABCD là hình thang
a, Ta có:\(\dfrac{AB}{BD}=\dfrac{3}{6}=\dfrac{1}{2}\\ \dfrac{BD}{DC}=\dfrac{6}{12}=\dfrac{1}{2}\\ \dfrac{AD}{BC}=\dfrac{5}{10}=\dfrac{1}{2}\\ \Rightarrow\dfrac{AB}{BD}=\dfrac{BD}{DC}=\dfrac{AD}{BC}=\dfrac{1}{2}\)
Xét ΔABD và ΔBDC có:
\(\dfrac{AB}{BD}=\dfrac{BD}{DC}=\dfrac{AD}{BC}\left(cmt\right)\)
\(\Rightarrow\Delta ABD\sim\Delta BDC\left(c.c.c\right)\)
b, Ta có \(\Delta ABD\sim\Delta BDC\left(cma\right)\Rightarrow\widehat{ABD}=\widehat{BDC}\)
Mà 2 góc này là 2 góc so le trong \(\Rightarrow AB//CD\)
\(\Rightarrow\)Tứ giác ABCD là hình thang
cho tứ giác ABCD có AB =3 cm, BC= 10 cm,CD=12cm, AD=5cm, đường chéoBD= 6cm.Chứng minh a,tam giác ABD đồng dạng với tam giác BDC . b, Tứ giác ABCD là hình thang
Tứ giác ABCD có góc A = góc D= 90 độ , góc C = 40 .cho biết AB = 4cm , AD = 3 cm , tính S tứ giác ABCD
Tứ giác ABCD có góc A= góc D = 90 độ nên ABCD là hình thang vuông. Từ B kẻ BH vuông góc với CD. Ta có BH= AD =3 cm.
Xét tam giác vuông BHC có góc C=40 độ nên tan 40 = BH/HC . suy ra HC = BH/tan40 = 3/ tan 40
Ta lại có AB= DH =4 cm nên CD = DH+HC 4+ 3/ tan 40
Vậy diện tích tứ giác ABCD = (AB+CD).BH/2
Cho hình bình hành ABCD, M là trung điểm AB, N là trung điểm CD.
a. CM tứ giác AMND là hình bình hành.
b. CM Tứ giác AMCN là hình bình hành.
c. CM AC,BD, MN đồng quy.
Bài 2 : Cho hình thang cân ABCD ( AB // CD ). Gọi M,N,P ,Q lần lượt là trung điểm Ab,CD,AD,CA. Biết AC vuông góc với BD.
a. CM tứ giác MNPQ là hình bình hành.
b. CM tứ giác MNPQ là hình thoi.
Bài 1 : Cho tứ giác ABCD có AC = 8cm, BD = 10 cm . E,F,H,I lần lượt là trung điểm AB,CD,AD. Tìm chu vi tứ giác EFHI ?
Bài 2 : Cho hình thang vuông ABCD . Góc A = 90 độ , AB//CD , AB = 2 cm , AD = 3 cm , BC = 5 cm . Tìm độ dài đường trung bình hình thang ABCD ?
Bài 3 : Cho tam giác ABC vuông cân tại A , AB = 4 cm .Kẻ ẠH vuông góc BC, HM vuông góc AB, HN vuông góc AC. Tìm MN ?
Cho tứ giác ABCD có A = C = 90 độ. Vẽ CH vuông góc AB. Biết rằng đường chéo AC là đường phân giác góc A và CH = 6 cm. Tính diện tích tứ giác ABCD
Cho tứ giác ABCD ,tứ giác này vuông ở A và D ,biết AB = 3 CD,AB = 9 cm,AC = 10 cm Tính:
a) Diện tích ABCD
b) Diện tích BCD
c) Kéo dài DA cắt CB tại N. Tính diện tích ABN
Cho tứ giác ABCD có: AB=5cm; AB+BC=12cm; BC+CD=12cm; CD+AD=12cm. CM: tứ giác ABCD là hình bình hành
helpp
AB = 5cm
=> BC = 12 - 5 = 7cm
=> CD = 12 - 7 = 5cm
=> AD = 12 - 5 = 7cm
Vì AB = CD, BC = AD, mà AB đối CD, BC đối AD
=> Tứ giác ABCD là hbh
Cho tứ giác ABCD gọi M ,N ,P, Q lần lượt là trung điểm của AB ,BC ,CD, DA a) Chứng minh tứ giác MNPQ là hình chữ nhật b) tính diện tích tứ giác MNPQ biết AC = 12 cm ,BC = 10 cm
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
Cho tứ giác ABCD , biết góc A : B : C : D = 1 : 2 : 3 : 4
a, Tính các góc của tứ giác
b, CM AB//CD
a. Gọi số đo các góc của tứ giác ABCD lần lượt là: `x,2x,3x,4x (x>0)`
Có: `x+2x+3x+4x=360^o` (Tổng 4 góc của 1 tứ giác)
`<=> x=36^o`
`=> \hatA=36^o`
`\hatB=72^o`
`\hatC=108^o`
`\hatD=144^o`
b.
`\hatA+\hatD=180^o`
Mà 2 góc ở vị trí trong cùng phía.
`=> AB ////DC`
a) Tổng các góc của tứ giác là \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Ta có: \(\widehat{A}:\widehat{B}:\widehat{C}:\widehat{D}=1:2:3:4\)
\(\Rightarrow\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^o}{10}=36^o\)
\(\Rightarrow\widehat{A}=36^o.1=36^o\)
\(\Rightarrow\widehat{B}=36^o.2=72^o\)
\(\Rightarrow\widehat{C}=36^o.3=108^o\)
\(\Rightarrow\widehat{D}=36^o.4=144^o\)
b) Tứ giác ABCD có:
\(\widehat{A}+\widehat{D}=36^o+144^o=180^o\)
Mà \(\widehat{A}\)và \(\widehat{D}\)là hai góc trong cùng phía
VậyAB//CD