\(2(sinx+cosx)+sin2x+1=0\)
giải giúp em với ạ em thanks nhìu!!!
a)\(sinx+cosx=\dfrac{1}{cosx}\)
b)\(4sin2x-3sin\left(2x-\dfrac{\pi}{2}\right)=5\)
c)\(sin2x+sin^2x=\dfrac{1}{2}\)
Giải hộ em 3 pt trên với! Em cảm ơn.
a.
ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)
Chia 2 vế cho cosx:
\(tanx+1=\dfrac{1}{cos^2x}\)
\(\Rightarrow tanx+1=1+tan^2x\)
\(\Rightarrow\left[{}\begin{matrix}tanx=0\\tanx=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow2sin2x+2sin^2x=1\)
\(\Leftrightarrow2sin2x=1-2sin^2x\)
\(\Leftrightarrow2sin2x=cos2x\)
\(\Rightarrow tan2x=\dfrac{1}{2}\)
\(\Rightarrow2x=arctan\left(\dfrac{1}{2}\right)+k\pi\)
\(\Rightarrow x=\dfrac{1}{2}arctan\left(\dfrac{1}{2}\right)+\dfrac{k\pi}{2}\)
b.
\(\Leftrightarrow4sin2x+3sin\left(\dfrac{\pi}{2}-2x\right)=5\)
\(\Leftrightarrow4sin2x+3cos2x=5\)
\(\Leftrightarrow\dfrac{4}{5}sin2x+\dfrac{3}{5}cos2x=1\)
Đặt \(\dfrac{4}{5}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow\dfrac{3}{5}=sina\)
\(\Rightarrow sin2x.cosa+cos2x.sina=1\)
\(\Rightarrow sin\left(2x+a\right)=1\)
\(\Rightarrow2x+a=\dfrac{\pi}{2}+k2\pi\)
\(\Rightarrow x=-\dfrac{a}{2}+\dfrac{\pi}{4}+k\pi\)
\(sinx+4cosx=2+sin2x\)
\(\left(1-sin2x\right)\left(sinx+cosx\right)=cos2x\)
\(1+sinx+cosx+sin2x+cos2x=0\)
\(sinx+sin2x+sin3x=1+cosx+cos2x\)
\(sin^22x-cos^28x=sin\left(\dfrac{17\pi}{2}+10x\right)\)
Giải phương trình:
1,\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)
2,\(|cosx-sinx|+2sin2x=1\)
3,\(2sin2x-3\sqrt{6}|sinx+cosx|+8=0\)
4,\(cosx+\dfrac{1}{cosx}+sinx+\dfrac{1}{sinx}=\dfrac{10}{3}\)
1.
\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)
\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
2.
\(\left|cosx-sinx\right|+2sin2x=1\)
\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)
\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)
\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)
3.
\(2sin2x-3\sqrt{6}\left|sinx+cosx\right|+8=0\)
\(\Leftrightarrow2\left(sinx+cosx\right)^2-3\sqrt{6}\left|sinx+cosx\right|+6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|sinx+cosx\right|=\sqrt{6}\left(vn\right)\\\left|sinx+cosx\right|=\dfrac{\sqrt{6}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left|sin\left(x+\dfrac{\pi}{4}\right)\right|=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\pm\dfrac{\sqrt{3}}{2}\)
...
Tìm m để phương trình có nghiệm
Sin2x - 2(Sinx + Cosx) + m + 3 =0
Giúp em với ạ huhu
\(\Leftrightarrow\left(1+2sinx.cosx\right)-2\left(sinx+cosx\right)+2=-m\)
\(\Leftrightarrow\left(sinx+cosx\right)^2-2\left(sinx+cosx\right)+2=-m\)
Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\Rightarrow-\sqrt{2}\le t\le\sqrt{2}\)
\(\Rightarrow t^2-2t+2=-m\)
Xét \(f\left(t\right)=t^2-2t+2\) trên \(\left[-\sqrt{2};\sqrt{2}\right]\)
\(-\frac{b}{2a}=1\) ; \(f\left(1\right)=1\) ; \(f\left(-\sqrt{2}\right)=4+2\sqrt{2}\) ; \(f\left(\sqrt{2}\right)=4-2\sqrt{2}>1\)
\(\Rightarrow1\le f\left(t\right)\le4+2\sqrt{2}\)
\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(1\le-m\le4+2\sqrt{2}\)
\(\Rightarrow-4-2\sqrt{2}\le m\le-1\)
Giải pt
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(sin2x-cos2x+3sinx-cosx-1=0\)
1.
\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)
\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)
\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)
\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)
Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)
\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)
Vậy phương trình đã cho có nghiệm:
\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)
2.
\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)
\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)
\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)
\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow cos2x=0\)
\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
tìm GTLN,GTNN của hàm số
a/ y= sin2x + (\(\sqrt{3}\) +1) cos2x +sin4 x -cos4x -1
b/ (sinx -2cosx)(2sinx+cosx)-1
c/ y= (Sinx-cosx)2+2cos2x+3sinxcosx
giúp em giải chi tiết với ạ
a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)
\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)
Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)
b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)
\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)
\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)
c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)
\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)
\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)
Giải phương trình:
a, \(Tanx+Cosx-Cos^2x=Sinx\left(1+Tanx.Tan\dfrac{x}{2}\right)\)
b, \(1+Sinx+Cosx+Sin2x+Cos2x=0\)
1 + sinx + cosx + sin2x + cos2x = 0
<=> sin^2x+ cos^2 x + ( sinx+cosx) + 2.sinx.cosx + ( cos^2 x - sin^2 x)=0
<=> 2 cos^2 x + 2sinx.cosx + sinx + cosx =0
<=> 2cosx ( cos x + sinx) + sinx + cosx = 0
<=> ( cosx + sinx ) (2 cos x + 1 ) = 0
<=> cosx + sinx = 0 hoặc 2cosx + 1 =0
\(m\left(sinx+cosx\right)+sin2x+m-1=0\). Tìm m để phương trình có nghiệm
(Giúp mình giải bài này với)
\(\dfrac{1}{cosx\left(sinx-cosx\right)}=2\sqrt{2}sinx+\dfrac{2cosx}{sinx-cosx}\)
Bài này giải như nào ạ ??? Em cảm ơn trước nha.
Đk: \(\left\{{}\begin{matrix}x\ne\dfrac{\pi}{2}+m2\pi\\x\ne\dfrac{\pi}{4}+n\pi\end{matrix}\right.\left(m,n\in Z\right)\)
PT \(\Leftrightarrow1=2\sqrt{2}sinx.cosx\left(sinx-cosx\right)+2cos^2x\)
\(\Leftrightarrow\sqrt{2}.2sinx.cosx\left(sinx-cosx\right)+\left(2cos^2x-1\right)=0\)
\(\Leftrightarrow\sqrt{2}sin2x\left(sinx-cosx\right)+\left(cosx-sinx\right)\left(cosx+sinx\right)=0\)
\(\Leftrightarrow\sqrt{2}sin2x=sinx+cosx\)
\(\Leftrightarrow\sqrt{2}sin2x=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=x+\dfrac{\pi}{4}+k2\pi\\2x=\pi-x-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k2\pi\\x=\dfrac{\pi}{4}+k\dfrac{2\pi}{3}\end{matrix}\right.\left(k\in Z\right)\)