Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
bach nhac lam
Xem chi tiết
tthnew
27 tháng 4 2020 lúc 18:57

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)

Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)

Lũy thừa 6 cả 2 vế lên PT tương đương:

\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)

Cái ngoặc to vô nghiệm vì nó tương đương:

\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))

Vậy x = 3.

PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra

bach nhac lam
25 tháng 4 2020 lúc 11:57

@Akai Haruma, @Nguyễn Việt Lâm

giúp em vs ạ! Cần gấp ạ

em cảm ơn nhiều!

Tam Cao Duc
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2022 lúc 16:48

a/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow x+1-\sqrt{2x+2}+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\frac{x^2+2x+1-2x-2}{x+1+\sqrt{2x+2}}+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{x+1+\sqrt{2x+2}}+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

\(\Rightarrow x=1\)

2/ ĐKXĐ:\(\left[{}\begin{matrix}x=0\\x\ge2\\x\le-3\end{matrix}\right.\)

- Nhận thấy \(x=0\) là 1 nghiệm

- Với \(x\ge2\):

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-2}=2\sqrt{x+3}=\sqrt{4x+12}\)

Ta có \(VT\le\sqrt{2\left(x-1+x-2\right)}=\sqrt{4x-6}< \sqrt{4x+12}\)

\(\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm

- Với \(x\le-3\)

\(\Leftrightarrow\sqrt{1-x}+\sqrt{2-x}=2\sqrt{-x-3}\)

\(\Leftrightarrow3-2x+2\sqrt{x^2-3x+2}=-4x-12\)

\(\Leftrightarrow2\sqrt{x^2-3x+2}=-2x-15\) (\(x\le-\frac{15}{2}\))

\(\Leftrightarrow4x^2-12x+8=4x^2+60x+225\)

\(\Rightarrow x=-\frac{217}{72}\left(l\right)\)

Vậy pt có nghiệm duy nhất \(x=0\)

Nguyễn Việt Lâm
17 tháng 9 2022 lúc 16:48

Bài 3: ĐKXĐ: \(-3\le x\le6\)

Đặt \(\sqrt{3+x}+\sqrt{6-x}=t\) \(\Rightarrow3\le t\le3\sqrt{2}\)

\(t^2=9+2\sqrt{\left(3+x\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(3+x\right)\left(6-x\right)}=\frac{9-t^2}{2}\)

Phương trình trở thành:

\(t+\frac{9-t^2}{2}=m\Leftrightarrow-t^2+2t+9=2m\) (2)

a/ Với \(m=3\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{3+x}+\sqrt{6-x}=3\)

\(\Leftrightarrow2\sqrt{\left(3+x\right)\left(6-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

b/ Xét hàm \(f\left(t\right)=-t^2+2t+9\) trên \(\left[3;3\sqrt{2}\right]\)

\(-\frac{b}{2a}=1< 3\Rightarrow\) hàm số nghịch biến trên \(\left[3;3\sqrt{2}\right]\)

\(f\left(3\right)=6\) ; \(f\left(3\sqrt{2}\right)=6\sqrt{2}-9\)

\(\Rightarrow6\sqrt{2}-9\le2m\le6\Rightarrow\frac{6\sqrt{2}-9}{2}\le m\le3\)

Bài 4 làm tương tự bài 3

An Đinh Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 8 2023 lúc 9:02

a: \(A=\dfrac{1}{x-1}\cdot5\sqrt{3}\cdot\left|x-1\right|\cdot\sqrt{x-1}\)

\(=\dfrac{5\sqrt{3}}{x-1}\cdot\left(x-1\right)\cdot\sqrt{x-1}=5\sqrt{3}\cdot\sqrt{x-1}\)

b: \(B=10\sqrt{x}-3\cdot\dfrac{10\sqrt{x}}{3}-\dfrac{4}{x}\cdot\dfrac{x\sqrt{x}}{2}\)

\(=10\sqrt{x}-10\sqrt{x}-\dfrac{4\sqrt{x}}{2}=-2\sqrt{x}\)

c: \(C=x-4+\left|x-4\right|\)

=x-4+x-4

=2x-8

nguyenquockhang
Xem chi tiết
Nguyễn Trọng Chiến
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:15

1.

\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)

\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)

\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)

\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)

\(\Leftrightarrow7x^2+20x+11=0\)

Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:15

2.

ĐKXĐ: ...

\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)

\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
14 tháng 1 2021 lúc 13:21

3.

ĐKXĐ: ...

Từ pt dưới:

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3x-3y=3x^2+3y^2+1+1\)

\(\Leftrightarrow x^3-y^3+3x-3y=3x^2+3y^2+1+1\)

\(\Leftrightarrow x^3-3x^2+3x-1=y^3+3y^2+3y+1\)

\(\Leftrightarrow\left(x-1\right)^3=\left(y+1\right)^3\)

\(\Leftrightarrow y=x-2\)

Thế vào pt trên:

\(x^2-2x+3=2\sqrt{5x-2}+\sqrt{7x-1}\)

\(\Leftrightarrow x^2-5x+2+2\left(x-\sqrt{5x-2}\right)+\left(x+1-\sqrt{7x-1}\right)=0\)

\(\Leftrightarrow x^2-5x+2+\dfrac{2\left(x^2-5x+2\right)}{x+\sqrt{5x-2}}+\dfrac{x^2-5x+2}{x+1+\sqrt{7x-1}}=0\)

\(\Leftrightarrow x^2-5x+2=0\)

Pham Thi Thanh Thuy
Xem chi tiết
Nguyễn Thiều Công Thành
12 tháng 7 2017 lúc 23:02

\(\Leftrightarrow\frac{3\left(\sqrt{\left(x+5\right)\left(x+2\right)}+1\right)}{\sqrt{x+5}+\sqrt{x+2}}=3\)

đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)

\(\Rightarrow\frac{ab+1}{a+b}=1\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)

thay vào là được

Pham Thi Thanh Thuy
12 tháng 7 2017 lúc 23:06

bạn có thể giải rõ hơn ko

Hải Nam Xiumin
Xem chi tiết
Hậu Duệ Mặt Trời
20 tháng 7 2016 lúc 20:52

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

Hải Nam Xiumin
21 tháng 7 2016 lúc 6:58

cảm ơn bạn nha ok

Trang-g Seola-a
Xem chi tiết
Hokage Naruto
Xem chi tiết
Akai Haruma
15 tháng 6 2021 lúc 1:14

Lời giải:

ĐKXĐ: $x\geq -1$
PT \(\Leftrightarrow x(\sqrt{x+1}-2)+(x+5)(\sqrt{x+6}-3)=x^2-9\)

\(\Leftrightarrow x.\frac{x-3}{\sqrt{x+1}+2}+(x+5).\frac{x-3}{\sqrt{x+6}+3}-(x-3)(x+3)=0\)

\(\Leftrightarrow (x-3)\left[\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\right]=0\)

Ta sẽ cm pt chỉ có nghiệm $x=3$ bằng cách chỉ ra biểu thức trong ngoặc vuông luôn âm.

Nếu $-1\leq x< 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{\sqrt{x+6}+3}-(x+3)< \frac{x+5}{3}-(x+3)=\frac{-2(x+4)}{3}< 0\)

Nếu $x\geq 0$ thì:
\(\frac{x}{\sqrt{x+1}+2}+\frac{x+5}{\sqrt{x+6}+3}-(x+3)\leq \frac{x}{2}+\frac{x+5}{3}-(x+3)=\frac{-(x+8)}{6}<0\)

Vậy........