cau 1:tìm GTLN và GTNN của A = \(\sqrt{x-2013}+\sqrt{y-2012}\)với x+y=4033
Cho số thực x tìm GTNN của biểu thức
\(A=\sqrt{x-2012-2\sqrt{x-2013}}+\sqrt{x+12-90\sqrt{x-2013}}\)
ĐKXĐ: \(x-2013\ge0\Leftrightarrow x\ge2013\)
Ta có:
\(A=\sqrt{x-2013-2\sqrt{x-2013}+1}+\sqrt{x-2013-90\sqrt{x-2013}+2025}\)
\(=\sqrt{\left(\sqrt{x-2013}-1\right)^2}+\sqrt{\left(\sqrt{x-2013}-45\right)^2}\)
\(=\left|\sqrt{x-2013}-1\right|+\left|\sqrt{x-2013}-45\right|\)
\(=\left|\sqrt{x-2013}-1\right|+\left|45-\sqrt{x-2013}\right|\)
\(\ge\left|\sqrt{x-2013}-1+45-\sqrt{x-2013}\right|\)
\(=\left|-1+45\right|=\left|44\right|=44\)
Vậy GTNN của A là 44, đạt được khi và chỉ khi \(\left(\sqrt{x-2013}-1\right)\left(45-\sqrt{x-2013}\right)\ge0\)
\(\Leftrightarrow1\le\sqrt{x-2013}\le45\)
\(\Leftrightarrow1\le x-2013\le2025\)
\(\Leftrightarrow2014\le x\le4038\left(tm\right)\)
Cu Hùng lên mà lấy bài này
1 Cho Biểu thức \(\frac{x^2-\sqrt{x}}{x+\sqrt{x+1}}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a, Rút gon A
b,tìm GTNN của A
Tìm x để \(B=\frac{2\sqrt{x}}{A}\) là số nguyên
2 giải pt
a,\(\sqrt{x-2}+\sqrt{y+2019}+\sqrt{z-2010}=\frac{1}{2}\left(x+y+z\right)\)
b,\(\left(x-5\right)^{2010}+\left(x-6\right)^{2010}=1\)
3 Cho các số o âm x,y,z thõa mãn \(x+y+z\le3\) . Tìm GTLn \(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(x+y+z\right)\)
4 giải pt nghiệm nguyên
\(4x^2-8y^3+2z^2+4x-4=0\)
5 tín số nguyên a,b t/m \(\frac{2}{a+b\sqrt{5}}-\frac{3}{a-b\sqrt{5}}=-9-20\sqrt{5}\)
6giải pt \(\sqrt{x^2+1-2x}+\sqrt{x^2-4x+4}=\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}\)
\(\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\)
7 Tìm GTNN , GTLN \(M=2x+\sqrt{5-x^2}\)
8 cho\(x,y,z\in(0,1]\)
CM \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=\frac{a^2+a+1}{\left(a+1\right)}\Rightarrow\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}=\frac{2013^2}{2013}=2013\)
\(\Rightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=|x-1|+|x-2|=2013\)
giải tiếp nha
với a,b là những số dương,tìm GTLN-GTNN của
\(x\sqrt{a+y}+y\sqrt{a+x}\)với x,y là những số thực dương và x+y=b
ta có \(x\sqrt{a+y}+y\sqrt{a+x}=\sqrt{x}\sqrt{ax+xy}+\sqrt{y}\sqrt{ay+xy}\)
<=\(\sqrt{\left(x+y\right)\left(ax+xy+ay+xy\right)}=\sqrt{b\left[a\left(x+y\right)+2xy\right]}=\sqrt{b.a.b+b2xy}\)
Mà \(2xy\le\frac{\left(x+y\right)^2}{2}=\frac{b}{2}\Rightarrow b.2xy\le\frac{b^2}{2}\)
=>...\(\le\sqrt{b^2a+\frac{b^2}{2}}=b\sqrt{a+\frac{1}{2}}\)
Dâu = xảy ra <=> x=y=b/2
^_^
Tìm : a) GTNN của A = x2 + y2 với x + y = 4
b) GTLN của B = x2y với x > 0, y > 0 và 2x + xy = 4
c) GTNN của \(C=\sqrt{x^2+4x+13}\)
d) GTLN của \(D=\sqrt{x-1}+\sqrt{y-2}\) với x + y = 4
e) GTNN của \(E=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\)
f) GTNN của \(F=\left|x+1\right|+\sqrt{x^2+2x+5}\)
câu a) rút x theo y thế vào A rồi áp dụng HĐT
b)rút xy thế vào B
c)HĐT
d)rút x theo y thé vào C
rồi dùng BĐT cô-si
e)BĐT chưa dấu giá trị tuyệt đối
Tìm GTNN của A :
A = \(\frac{2011x+2012\sqrt{1-x^2}+2013}{\sqrt{1-x^2}}\)
Áp dụng BĐT AM-GM ta có:
\(A=\frac{2011x+2012\sqrt{1-x^2}+2013}{\sqrt{1-x^2}}\)\(=\frac{2011x+2013}{\sqrt{1-x^2}}+2012\)
\(=\frac{2012\left(x+1\right)+\left(1-x\right)}{\sqrt{1-x^2}}+2012\)\(\ge\frac{2\sqrt{2012\left(x+1\right)\left(1-x\right)}}{\sqrt{1-x^2}}+2012\)
\(\ge\frac{2\sqrt{2012\left(1-x^2\right)}}{\sqrt{1-x^2}}+2012=2\sqrt{2012}+2012\)
Tìm GTLN và GTNN của
C=\(\sqrt{x-4}+\sqrt{y-3}\) với x+y=15
Áp dụng bất đẳng thức Bunhiacopxki, ta có :
\(C^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)=16\)
\(\Rightarrow C^2\le16\Rightarrow C\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4;y\ge3\\x+y=15\\\sqrt{x-4}=\sqrt{y-3}\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)
Vậy Max C = 4 \(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)
Tìm giá trị nhỏ nhất :Xét : \(C^2=x-4+y-3+2\sqrt{\left(x-4\right)\left(y-3\right)}=8+2\sqrt{\left(x-4\right)\left(y-3\right)}\)
Vì \(2\sqrt{\left(x-4\right)\left(y-3\right)}\ge0\) nên \(C^2\ge8\Rightarrow C\ge2\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge4;y\ge3\\x+y=15\\\left(x-4\right)\left(y-3\right)=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=4\\y=11\end{cases}}\) hoặc \(\hept{\begin{cases}x=12\\y=3\end{cases}}\)
Vậy Min C = \(2\sqrt{2}\) \(\Leftrightarrow\orbr{\begin{cases}\left(x;y\right)=\left(4;11\right)\\\left(x;y\right)=\left(12;3\right)\end{cases}}\)
Các số thực x, y, z thỏa mãn:
\(\hept{\begin{cases}\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}\\\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\end{cases}}\)
CMR: \(x=y=z\)
Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:
\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)
Vai trò \(x,y,z\) bình đẳng
Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:
\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)
\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)
\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)
\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)
Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)
Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)
Cho \(x,y,z\) thỏa mãn
\(\hept{\begin{cases}\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}\\\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\end{cases}}\)
CMR: \(x=y=z\)
Giả sử z là số lớn nhất trong 3 số
Từ đề bài ta có:
\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)
\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)
\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)
Ta lại có:
\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)
Dấu = xảy ra khi x = y = z
Tương tự cho trường hợp x lớn nhất với y lớn nhất.
fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit
tìm gtln gtnn của hàm số
\(y=\sqrt{1+x}+\sqrt{1-x}+\dfrac{x^2}{4}\)
Lời giải:
TXĐ: $[-1;1]$
$y'=\frac{1}{2\sqrt{x+1}}-\frac{1}{2\sqrt{1-x}}+\frac{x}{2}$
$y'=0\Leftrightarrow x=0$
$f(0)=2$;
$f(1)=f(-1)=\sqrt{2}+\frac{1}{4}$
Vậy $f_{\min}=2; f_{\max}=\frac{1}{4}+\sqrt{2}$