Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cherry Trần
Xem chi tiết
Võ Đông Anh Tuấn
2 tháng 8 2017 lúc 17:02

Đề sai sao á :))

Nịna Hatori
2 tháng 8 2017 lúc 17:06

Bạn ơi đề có sai ko

Sao lại \(\dfrac{y}{y}\)

Nịna Hatori
2 tháng 8 2017 lúc 17:16

- Theo đề bài ta có:

\(\dfrac{x}{3}=\dfrac{y}{4},\dfrac{y}{6}=\dfrac{z}{8}\)

=> \(\dfrac{x}{18}=\dfrac{y}{24}=\dfrac{z}{32}\)

=> \(\dfrac{3x}{54}=\dfrac{2y}{48}=\dfrac{z}{32}\)

- Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{3x}{54}=\dfrac{2y}{48}=\dfrac{z}{32}\)=\(\dfrac{3x-2y-z}{54-48-32}\)=\(\dfrac{13}{-26}=-2\)

- Suy ra:

x = \(\dfrac{-2.54}{3}=-36\)

y = \(\dfrac{-2.48}{2}=-48\)

z = \(-2.32=-64\)

- Vậy x = -36; y = -48; z = -64

dang tran thai binh
Xem chi tiết
Tram Nguyen
2 tháng 8 2018 lúc 7:29

Biểu đồBiểu đồ

Natsu Dragneel
2 tháng 8 2018 lúc 8:07

a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

⇒2x = 3.30 = 90 ⇒ x = 45

3y = 3.60 = 180 ⇒ y = 60

z = 3.28 = 84

Ý b) có gì đó sai sai ?

c)Ta có :

\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

⇒x = 5.15 = 75

y = 5.10 = 50

z = 5.6 = 30

d)Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)

⇒ x = 2k ; y = 3k ; z = 5k

⇒ xyz = 2k.3k.5k = 30k3 = 810

⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15
Cherry Trần
Xem chi tiết
Lightning Farron
2 tháng 8 2017 lúc 17:43

Từ \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}\)

\(\dfrac{y}{6}=\dfrac{z}{8}\Rightarrow\)\(\dfrac{y}{12}=\dfrac{z}{16}\)

Suy ra \(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)\(\Rightarrow\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}=\dfrac{3x-2y-z}{27-24-16}=\dfrac{13}{-13}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=-1\Rightarrow x=-1\cdot9=-9\\\dfrac{y}{12}=-1\Rightarrow y=-1\cdot12=-12\\\dfrac{z}{16}=-1\Rightarrow z=-1\cdot16=-16\end{matrix}\right.\)

Adonis Baldric
2 tháng 8 2017 lúc 17:42

Ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x}{9}=\dfrac{y}{12}\)(1)

\(\dfrac{y}{6}=\dfrac{z}{8}=\dfrac{y}{12}=\dfrac{z}{16}\)(2)

Từ (1) và (2) , suy ra \(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ; ta được :

\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}=\dfrac{3x-2y-z}{27-24-16}=\dfrac{13}{-13}=-1\)

Do đó :

\(\dfrac{x}{9}=-1\Rightarrow x=-1.9=-9\)

\(\dfrac{y}{12}=-1\Rightarrow y=-1.12=-12\)

\(\dfrac{z}{16}=-1\Rightarrow z=-1.16=-16\)

Vậy x = -9 ; y = -12 ; z = -16

 Mashiro Shiina
2 tháng 8 2017 lúc 17:50

\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{6}=\dfrac{z}{8}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{16}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)

\(\Rightarrow\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x}{54}=\dfrac{y}{24}=\dfrac{z}{32}\)

\(=\dfrac{3x-2y-z}{27-24-16}\)

\(=\dfrac{13}{-13}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=9.-1=-9\\y=12.-1=-12\\z=16.-1=-16\end{matrix}\right.\)

Nguyễn Thuỷ Tiên
Xem chi tiết
Cherry Trần
Xem chi tiết
Adonis Baldric
2 tháng 8 2017 lúc 16:57

Áp dụng tinshh chất dãy tỉ số bằng nhau ; ta được :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x}{6}=\dfrac{3y}{12}=\dfrac{5z}{25}=\dfrac{2x+3y+5z}{6+12+25}=\dfrac{86}{43}=2\)

Do đó :

\(\dfrac{x}{3}=2\Rightarrow x=2.3=6\)

\(\dfrac{y}{4}=2\Rightarrow y=2.4=8\)

\(\dfrac{z}{5}=2\Rightarrow z=2.5=10\)

Vậy x = 6 ; y = 8 ; z = 10

`ღ´Ngốc`ღ´
2 tháng 8 2017 lúc 17:00

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\dfrac{2x}{6}=\dfrac{3y}{12}=\dfrac{5z}{25}=\dfrac{2x+3y+5z}{6+12+25}=\dfrac{86}{43}=2\) \

\(\Rightarrow x=2.3=6\)

\(y=2.4=8\)

\(z=2.5=10\)

Nguyễn Khánh Toàn
Xem chi tiết
Rimuru tempest
20 tháng 11 2018 lúc 23:16

theo bđt cauchy schwars dạng engel ta có

\(T=\dfrac{x^2}{y+x}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\)

Dấu '=' xảy ra khi x=y=z

pt \(\Leftrightarrow\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015\)

\(\Leftrightarrow3\sqrt{2}x=2015\)

\(\Leftrightarrow x=\dfrac{2015}{3\sqrt{2}}\)

vậy \(T_{min}=\dfrac{2015}{\sqrt{2}}\) khi \(x=y=z=\dfrac{2015}{3\sqrt{2}}\)

ko chắc đúng nha bạn :))

Akane Hoshino
Xem chi tiết
An Trần
21 tháng 10 2018 lúc 8:43

Ta có:

\(\dfrac{12x-15y}{2017}=\dfrac{20z-12x}{2018}=\dfrac{15y-20z}{2019}\)

\(=\dfrac{12x-15y+20z-12x+15y-20z}{2017+2018+2019}\)

\(=\dfrac{0}{2017+2018+2019}=0\)

\(\Rightarrow\left\{{}\begin{matrix}12x-15y=0\\20z-12x=0\\15y-20z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}12x=15y\\20z=12x\\15y=20z\end{matrix}\right.\)\(\Rightarrow12x=15y=20z\)

\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}\)

Áp dụng tích chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y+z}{5+4+3}=\dfrac{48}{12}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.5=20\\y=4.4=16\\z=4.3=12\end{matrix}\right.\)

Vậy ...

Atani otaku
Xem chi tiết
Hải Đăng
17 tháng 10 2017 lúc 15:13

\(a)\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{y+z+x+x+z+2+x+y-3}{x+y+z}\)

\(=\dfrac{\left(x+y+z\right)+\left(x+y+z\right)+\left(1+2-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

Lại có: \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

\(\Rightarrow2=\dfrac{1}{x+y+z}\Rightarrow2\left(x+y+z\right)=1\Rightarrow x+y+z=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z+1}{x}=2\\\dfrac{x+z+2}{y}=2\\\dfrac{x+y-3}{z}=2\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y+z+x+1=3x\\x+y+z+2=3y\\x+y+z-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+1=3x\\\dfrac{1}{2}+2=3y\\\dfrac{1}{2}-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1+\dfrac{1}{2}}{3}\\y=\dfrac{\dfrac{1}{2}+2}{3}\\z=\dfrac{\dfrac{1}{2}-3}{3}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)

Chúc bạn học tốt!

Nguyễn Châu Mỹ Linh
Xem chi tiết
Lê Ngọc Ánh
7 tháng 11 2018 lúc 19:37

1. Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}=\dfrac{27}{4}\)

+\(\dfrac{x}{6}=\dfrac{27}{4}\Rightarrow x=\dfrac{27.6}{4}=\dfrac{81}{2}\)

+\(\dfrac{y}{5}=\dfrac{27}{4}\Rightarrow y=\dfrac{27.5}{4}=\dfrac{135}{4}\)

+\(\dfrac{z}{3}=\dfrac{27}{4}\Rightarrow z=\dfrac{27.3}{4}=\dfrac{81}{4}\)

Vậy \(x=\dfrac{81}{2};y=\dfrac{135}{4};z=\dfrac{81}{4}\)

Lê Ngọc Ánh
7 tháng 11 2018 lúc 19:42

2,Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{c}{4}=\dfrac{x+2y-3c}{2+2.3+3.4}=\dfrac{-20}{20}=-1\)

+\(\dfrac{x}{2}=-1\Rightarrow x=-1.2=-2\)

+\(\dfrac{y}{3}=-1\Rightarrow y=-1.3=-3\)

+\(\dfrac{c}{4}=-1\Rightarrow c=-1.4=-4\)

Vậy \(x=-2;y=-3;c=-4\)

Lê Ngọc Ánh
7 tháng 11 2018 lúc 19:49

3,Từ \(5x=8y=20z\Rightarrow\dfrac{5x}{160}=\dfrac{8y}{160}=\dfrac{20z}{160}\)

\(\Rightarrow\dfrac{x}{32}=\dfrac{y}{20}=\dfrac{z}{8}\)

Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{32}=\dfrac{y}{20}=\dfrac{z}{8}=\dfrac{x-y-z}{32-20-8}=\dfrac{3}{4}\)

+\(\dfrac{x}{32}=\dfrac{3}{4}\Rightarrow x=\dfrac{32.3}{4}=24\)

+\(\dfrac{y}{20}=\dfrac{3}{4}\Rightarrow y=\dfrac{20.3}{4}=15\)

+\(\dfrac{z}{8}=\dfrac{3}{4}\Rightarrow z=\dfrac{3.8}{4}=6\)

Vậy \(x=24;y=15;z=6\)