theo bđt cauchy schwars dạng engel ta có
\(T=\dfrac{x^2}{y+x}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\)
Dấu '=' xảy ra khi x=y=z
pt \(\Leftrightarrow\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015\)
\(\Leftrightarrow3\sqrt{2}x=2015\)
\(\Leftrightarrow x=\dfrac{2015}{3\sqrt{2}}\)
vậy \(T_{min}=\dfrac{2015}{\sqrt{2}}\) khi \(x=y=z=\dfrac{2015}{3\sqrt{2}}\)
ko chắc đúng nha bạn :))