Phân tích đa thức thành nhân tử:
a) (3x-5)2-4(2-7x)2
b) (ax+by)2-(ay+bx)2
Bài 2 : Phân tích các đa thức sau thành nhân tử :
a) x2 - ( m + n )x + mn
b) ax + by + a - bx - ay - b
\(a,=x^2-mx-nx+mn=x\left(x-m\right)-n\left(x-m\right)=\left(x-n\right)\left(x-m\right)\\ b,=a\left(x-y\right)-b\left(x-y\right)+\left(a-b\right)\\ =\left(x-y\right)\left(a-b\right)+\left(a-b\right)=\left(a-b\right)\left(x-y+1\right)\)
b: \(=a\left(x-y\right)-b\left(x-y\right)+a-b\)
\(=\left(x-y+1\right)\left(a-b\right)\)
a) \(x^2-\left(m+n\right)x+mn=\left(x^2-n\cdot x\right)-\left(m\cdot x-m\cdot n\right)=x\left(x-n\right)-m\left(x-n\right)=\left(x-m\right)\left(x-n\right)\)
b) \(ax+by+a-bx-ay-b\)
\(=\left(ax-ay+a\right)-\left(bx-by+b\right)\)
\(=a\left(x-y+1\right)-b\left(x-y+1\right)\)
\(\left(a-b\right)\left(x-y+1\right)\)
Phân Tích đa thức thành nhân tử:
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+ay+bx+by\right)\left(ax-ay+by-bx\right)\)
\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)
\(\left(ax+by\right)^2-\left(ay+bx\right)^2=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\)
\(=\left[a\left(x-y\right)-b\left(x-y\right)\right].\left[a\left(x+y\right)+b\left(x+y\right)\right]\)
\(=\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)
Xin lỗi!
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+ay+bx+by\right)\left(ax-ay+bx-by\right)\)
\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)
Phân tích đa thức thành nhân tử:
a, \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
b, \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+by+ay+bx\right)\left(ax+by-ay-bx\right)\)
\(=\left[a\left(x+y\right)+b\left(x+y\right)\right]\left[a\left(x-y\right)-b\left(x-y\right)\right]\)
\(=\left(a+b\right)\left(a-b\right)\left(x+y\right)\left(x-y\right)\)
\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)
\(=\left[a^2+b^2-5+2ab+4\right]\left[a^2+b^2-5-2ab-4\right]\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)
\(=\left(a+b-1\right)\left(a+b+1\right)\left(a-b-3\right)\left(a-b+3\right)\)
a)
(ax+by)2 - (ay+bx)2
=(ax+by-ay-bx)(ax+by+ay+bx)
=[ a(x-y) -b(x-y)][ a(x+y) + b(x+y)]
=(a-b)(x-y)(a+b)(x+y)
b)(a2+b2-5)2 - 4(ab+2)2
=(a2+b2-5-2ab-4)(a2+b2-5+2ab+4)
=[ (a-b)2 -9][ (a+b)2 -1]
=(a-b-3)(a-b+3)(a+b-1)(a+b+1)
a, \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
\(=\left(ax+ay+bx+by\right)\left(ax-ay+bx-by\right)\)
\(=\left(a+b\right)\left(x+y\right)\left(a-b\right)\left(x-y\right)\)
b, \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a-b\right)^2-9\right]\left[\left(a+b\right)^2-1\right]\)
\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b+1\right)\left(a+b-1\right)\)
Phân tích đa thức thành nhân tử:
a) (3x - 1)2 - 16
b) (5x - 4)2 - 49x2
c) (2x + 5)2 - ( x - 9)2
d) (3x + 1)2 - 4(x - 2)2
e) 9(2x + 3)2 - 4(x + 1)2
f) 4b2c2 - (b2 + c2 - a2) 2
g) (ax + by)2 - (ay + bx)2
h) (a2 + b2 - 5)2 - 4(ab + 2)2
i) (4x2 - 3x + 18)2 - (4x2 + 3x)2
k) 9(x + y - 1)2 - 4(2x + 3y + 1)2
e) -4x2 + 12xy - 9x2 + 25
m) x2 - 2xy + y2 - 4m2 + 4mn - n2
\(a,=\left(3x-5\right)\left(3x+3\right)=3\left(x+1\right)\left(3x-5\right)\\ b,=\left(5x-4-7x\right)\left(5x-4+7x\right)=\left(-2x-4\right)\left(12x-4\right)\\ =-8\left(x+2\right)\left(x-3\right)\\ c,=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\\ =\left(x+14\right)\left(3x-4\right)\\ d,=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\\ =\left(x+5\right)\left(5x-3\right)\\ e,=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\\ =\left(4x+7\right)\left(8x+11\right)\\ f,=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\\ =\left[a^2-\left(b-c\right)^2\right]\left[\left(b+c\right)^2-a^2\right]\\ =\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\\ g,=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\\ =\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)
\(h,=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\\ =\left[\left(a-b\right)^2-9\right]\left[\left(a+b\right)^2-1\right]\\ =\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
a: \(\left(3x-1\right)^2-16\)
\(=\left(3x-1-4\right)\left(3x-1+4\right)\)
\(=\left(3x+3\right)\left(3x-5\right)\)
\(=3\left(x+1\right)\left(3x-5\right)\)
b: \(\left(5x-4\right)^2-49x^2\)
\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)
\(=\left(-2x-4\right)\left(12x-4\right)\)
\(=-8\left(x+2\right)\left(3x-1\right)\)
Phân tích đa thức thành nhân tử : \(A=\left(ax+by+cz\right)^2+\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2\)
phân tích đa thức sau thành nhân tử
a) ax + ay - 3x - 3y
b) x3 - 3x2 + 3x - 9
c) ax + a - bx - b + ax + c
d) 9 - x2 - 2xy - y2
a) \(ax+ay-3x-3y=a\left(x+y\right)-3\left(x+y\right)=\left(a-3\right)\left(x+y\right)\)
b) \(x^3-3x^2+3x-9=x^2\left(x-3\right)+3\left(x-3\right)=\left(x-3\right)\left(x^2+3\right)\)
c) xem lại đề
d) \(9-x^2-2xy-y^2=9-\left(x+y\right)^2=\left(3-x-y\right)\left(3+x+y\right)\)
Phân tích đa thức thành nhân tử ( nhóm nhiều hạng tử )
a) x3 - 2x2 + 2x - 13
b) ax + by + ay + bx
c) x2y + xy2 - x - y
d) ax2 + ay - bx2 - by
Giải từng bước giúp mình nhé !!! Cảm ơn trc
d) ax2 + ay - bx2 - by
= ( ax2 + ay ) - ( bx2 + by )
= a ( x2 + y ) - b ( x2 + y )
= ( x2 + y )( a - b )
c) x2y + xy2 - x - y
= ( x2y + xy2 ) - ( x + y )
= xy ( x + y ) - ( x+ y )
= ( x + y ) ( xy - 1 )
b) ax + by + ay + bx
= ax + ay + bx + by
= a ( x + y ) + b ( x + y )
= ( x + y ) ( a + b )
Phân tích đa thức thành nhân tử;
ax + by + a - bx - ay -b
= (ax+a-ay) + (by-bx-b)
= a nhân ( x+1-y) + b nhân ( y-x-1 )
= a nhân ( x+1-y) - b nhân ( x+1-y )
= (x+1-y) nhân (a-b)
Phân tích đa thức thành nhân tử
a, ax + by + ay + bx
b, x2y + xy + x + 1
c, x2 - ( a + b) x + ab
d, x2y + xy2 - x - y
e, ax2 + ay - bx2 - by
f, ax - 2x - a2 + 2a
\(a,ax+by+ay+bx=\left(ax+ay\right)+\left(by+bx\right)=a\left(x+y\right)+b\left(x+y\right)=\left(a+b\right)\left(x+y\right)\)
\(b,x^2y+xy+x+1=xy\left(x+1\right)+\left(x+1\right)=\left(xy+1\right)\left(x+1\right)\)
\(c,x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)=\left(x-b\right)\left(x-2\right)\)
\(d,x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(xy-1\right)\left(x+y\right)\)
\(e,a\left(x^2+y\right)-b\left(x^2+y\right)=\left(a-b\right)\left(x^2+y\right)\)
\(f,x\left(a-2\right)-a\left(a-2\right)=\left(x-a\right)\left(a-2\right)\)
dễ quá e gì ơi
a hướng dẫn thôi tự trình bày nhá
a)nhóm các hạng tử có a với a, có b với b rồi đặt nhân tử chung (kết quả là (a+b)(x+y)
b)nhóm hai hạng tử đầu với nhau 2 hạng tử cuối với nhau rồi đặt nhân tử chung ở nhóm 1 ra,sau đó sẽ xuất hiện tiếp nhân tử chung là x+1 thì đặt tiếp ra kế quả là (xy+1)(x+1)
c)đầu tiên là nhân đơn thức với đa thức hết ra sau đó nhóm như sau :
x^2 với -ax ; -bx với ab rồi đặt nhân tử chung ra và rút gọn được kết quả là (x-a)(x-b)
d)nhóm 2 cái đầu với nhau 2 cái cuối với nhau rồi đặt nhân tử chung kết quả là (x+y)(xy-1)
e)nhóm 2 cái đầu với nhau 2 cái cuối với nhau rồi đặt nhân tử chung kết quả là (x^2+y)(a-b)
câu cuối cùng cũng nhóm 2 cái đầu với 2 cái cuối rồi đặt nhân tử chung kết quả là (a-2)(x-a)
chúc e học tốt